cyclin-d1 has been researched along with Glomerulonephritis--Membranoproliferative* in 2 studies
2 other study(ies) available for cyclin-d1 and Glomerulonephritis--Membranoproliferative
Article | Year |
---|---|
Shenhua Tablet inhibits mesangial cell proliferation in rats with chronic anti-Thy-1 nephritis.
In China, mesangial proliferative glomerulonephritis (MsPGN) is one of the most common kidney diseases. In this study, we treated a rat model of chronic anti-Thy-1 MsPGN with Shenhua Tablet and evaluated whether the tablet was able to protect the kidney function. Thirty-six Wistar rats were randomly divided into six groups: (1) Sham surgery (Sham); (2) anti-Thy-1 nephritis model (Thy-1); (3) anti-Thy-1 nephritis model + irbesartan-treated (Irb); (4) anti-Thy-1 nephritis model + low-dose of Shenhua Tablet (SHL); (5) anti-Thy-1 nephritis model + medium-dose of Shenhua Tablet (SHM); (6) anti-Thy-1 nephritis model + high-dose of Shenhua Tablet (SHH).. Thirteen weeks after drug treatment, urinary proteins were quantified and renal pathological changes were thoroughly examined at the time point of 24 h. Meanwhile, the expression levels of p-Erk1/2, cyclin D1 and p21 at the renal cortex were also tested. The levels of urinary proteins and total cholesterol in the blood were significantly reduced in rats treated with any drug tested in this study. The level of triglyceride was significantly reduced in all three Shenhua Tablet-treated groups. Renal pathomorphological scores were significantly improved in groups of Irb, SHM and SHH. Mesangial cell proliferation was significantly inhibited in any drug-treated group. p-Erk1/2 and cyclin D1 were downregulated whereas p21 was upregulated in the renal cortex.. Our study indicated that Shenhua Tablet is able to inhibit the abnormal proliferation of mesangial cells and to prevent kidney damage, which is likely associated with downregulation of p-Erk1/2 and reduced activity of its downstream target-cyclin D1. Topics: Animals; Cell Proliferation; Chronic Disease; Cyclin D1; Drugs, Chinese Herbal; Glomerulonephritis, Membranoproliferative; Isoantibodies; Male; Mesangial Cells; Mitogen-Activated Protein Kinase 1; p21-Activated Kinases; Rats, Wistar; Reproducibility of Results; Serum Albumin; Tablets; Time Factors | 2016 |
Requirement of cyclin D1 in mesangial cell mitogenesis.
Abstract. Hyperplasia of mesangial cells (MC) is a frequent finding in glomerulonephritis. The control and function of cyclin D1, a regulator of cell cycle progression, in MC proliferation in vivo and in vitro were investigated. In a rat model of mesangioproliferative glomerulonephritis, increases in the number of cyclin D1-positive MC nuclei were prominent on day 5 of the disease, preceding the peak of MC hyperplasia. In growth-arrested rat MC in culture, mitogenic stimulation with serum or platelet-derived growth factor (PDGF) led to rapid increases in cyclin D1 protein expression. Transforming growth factor-beta1 inhibited PDGF induction of cyclin D1 protein at 12 h. In an examination of the subcellular distribution of cyclin D1, it was observed that stimulation of MC with PDGF for 6 h caused translocation of cyclin D1 from the cytoplasm into the nucleus. Coincubation with PDGF and transforming growth factor-beta1 completely inhibited this effect, without altering the cellular cyclin D1 protein abundance at that time point. To test whether reduction of cyclin D1 protein levels was sufficient to inhibit mitogenesis, MC were transfected with antisense oligonucleotides (ODN) complementary to rat cyclin D1 mRNA. Antisense ODN against cyclin D1 reduced the serum- or PDGF-induced protein expression of cyclin D1 to 27 or 10% of control levels, respectively. These inhibitory effects were correlated with diminished cyclin-dependent kinase 4 activity. Antisense ODN against cyclin D1 also decreased the PDGF-induced increase in p21(Waf-1) protein levels. The MC proliferation caused by serum or PDGF was markedly inhibited by antisense ODN against cyclin D1, as measured by [(3)H]thymidine uptake and cell counts. It is concluded that increased cyclin D1 protein expression of MC is required for MC proliferation. Targeting cyclin D1 expression may represent an effective means to inhibit MC proliferation in vitro and in vivo. Topics: Animals; Biological Transport; Cattle; Cell Nucleus; Cells, Cultured; Cyclin D1; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinases; Cyclins; DNA; Fetal Blood; Glomerular Mesangium; Glomerulonephritis, Membranoproliferative; Hyperplasia; Male; Mitosis; Oligonucleotides, Antisense; Platelet-Derived Growth Factor; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Transforming Growth Factor beta | 2000 |