cyclin-d1 has been researched along with Cardiomegaly* in 8 studies
2 review(s) available for cyclin-d1 and Cardiomegaly
Article | Year |
---|---|
[Cell cycle and heart failure].
Topics: Adenoviridae; Animals; Cardiomegaly; Cell Cycle; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p16; Genetic Therapy; Genetic Vectors; Heart Failure; Humans; Myocytes, Cardiac; Nuclear Localization Signals; Regenerative Medicine | 2005 |
Cardiac myocyte terminal differentiation. Potential for cardiac regeneration.
The exact mechanism of terminal differentiation in cardiac myocytes is currently unknown. Studies in the skeletal muscle system provided a model where muscle lineage termination gene directly interacts with Rb to produce and maintain the terminally differentiated state. This interaction provided the critical components for the lock in cell cycle arrest in skeletal muscle cell. Cardiac muscle appears on the surface very similar to skeletal muscle especially since they share large numbers of structural and contractile proteins. However, it is clear that cardiac muscle cells are distinct biologically at the regulatory level. First and foremost, differentiation and capacity for hyperplasia (mitosis) is not mutually exclusive, in that the heart being the first functional organ embryologically is able to grow via cell division until shortly after birth. Thereafter further growth is provided by hypertrophy. In skeletal muscle, these two processes, differentiation and ability to undergo mitosis, appear to be mutually exclusive. Second, cardiac muscles have not been shown to express any of the skeletal muscle determination basic helix loop helix factors like myoD or any proteins that are functionally similar. Third, heterokaryons of cardiac myocytes and fibroblasts reveal a lack of dominance of the cardiac muscle phenotype. This is distinctly different in skeletal muscle, whose phenotype is dominant which provided a platform to identify the skeletal muscle determination gene, myoD. Although various basic helix loop helix proteins and homeobox genes have been identified in cardiac myocytes, their function remains to be elucidated. At this time no cardiac determination gene has been identified. Despite these differences, we have shown that the biology of pocket proteins Rb and P107 is similar in skeletal and cardiac myocytes.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Cardiomegaly; CDC2-CDC28 Kinases; Cell Differentiation; Cell Division; Cyclin D1; Cyclin D2; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinases; Cyclins; Gene Expression; Genes, Retinoblastoma; Heart; Humans; Myocardium; Oncogene Proteins; Protein Serine-Threonine Kinases; Regeneration; Retinoblastoma Protein | 1995 |
6 other study(ies) available for cyclin-d1 and Cardiomegaly
Article | Year |
---|---|
Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy.
Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy. Topics: Animals; Aorta, Abdominal; Cardiomegaly; Cell Line; Cyclin D1; Cyclin D2; Cyclins; Disease Models, Animal; Enzyme Activation; HEK293 Cells; Humans; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Myocytes, Cardiac; Phenylephrine; Phosphorylation; Proto-Oncogene Proteins c-myc; Rats; Rats, Sprague-Dawley; Retinoblastoma Protein; STAT3 Transcription Factor | 2015 |
Distinct roles of GSK-3alpha and GSK-3beta phosphorylation in the heart under pressure overload.
Glycogen synthase kinase-3 (GSK-3) is a master regulator of growth and death in cardiac myocytes. GSK-3 is inactivated by hypertrophic stimuli through phosphorylation-dependent and -independent mechanisms. Inactivation of GSK-3 removes the negative constraint of GSK-3 on hypertrophy, thereby stimulating cardiac hypertrophy. N-terminal phosphorylation of the GSK-3 isoforms GSK-3alpha and GSK-3beta by upstream kinases (e.g., Akt) is a major mechanism of GSK-3 inhibition. Nonetheless, its role in mediating cardiac hypertrophy and failure remains to be established. Here we evaluated the role of Serine(S)21 and S9 phosphorylation of GSK-3alpha and GSK-3beta in the regulation of cardiac hypertrophy and function during pressure overload (PO), using GSK-3alpha S21A knock-in (alphaKI) and GSK-3beta S9A knock-in (betaKI) mice. Although inhibition of S9 phosphorylation during PO in the betaKI mice attenuated hypertrophy and heart failure (HF), inhibition of S21 phosphorylation in the alphaKI mice unexpectedly promoted hypertrophy and HF. Inhibition of S21 phosphorylation in GSK-3alpha, but not of S9 phosphorylation in GSK-3beta, caused phosphorylation and down-regulation of G1-cyclins, due to preferential localization of GSK-3alpha in the nucleus, and suppressed E2F and markers of cell proliferation, including phosphorylated histone H3, under PO, thereby contributing to decreases in the total number of myocytes in the heart. Restoration of the E2F activity by injection of adenovirus harboring cyclin D1 with a nuclear localization signal attenuated HF under PO in the alphaKI mice. Collectively, our results reveal that whereas S9 phosphorylation of GSK-3beta mediates pathological hypertrophy, S21 phosphorylation of GSK-3alpha plays a compensatory role during PO, in part by alleviating the negative constraint on the cell cycle machinery in cardiac myocytes. Topics: Animals; Blood Pressure; Cardiomegaly; Cell Nucleus; Cell Proliferation; Cyclin D1; Cyclin G; Cyclin G1; Cyclins; E2F Transcription Factors; Gene Knock-In Techniques; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heart Failure; Histones; Mice; Mice, Knockout; Myocardium; Myocytes, Cardiac; Phosphorylation | 2008 |
Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes.
Although mammalian cardiomyocytes lose their proliferative capacity after birth, there is evidence that postmitotic cardiomyocytes can proliferate provided that cyclin D1 accumulates in the nucleus. Here we show by Northern blot, Western analysis, and immunohistochemistry that 3,5,3'-triiodothyronine (T3) treatment of adult rats caused an increase of cyclin D1 mRNA and protein levels. The increased cyclin D1 protein content was associated with its translocation into the nucleus of cardiomyocytes. These changes were accompanied by the re-entry of cardiomyocytes into the cell cycle, as demonstrated by increased levels of cyclin A, PCNA, and incorporation of bromodeoxyuridine into DNA (labeling index was 30.2% in T3-treated rats vs. 2.2% in controls). Entry into the S phase was associated with an increased mitotic activity as demonstrated by positivity of cardiomyocyte nuclei to antibodies anti-phosphohistone-3, a specific marker of the mitotic phase (mitotic index was 3.01/1000 cardiomyocte nuclei in hyperthyroid rats vs. 0.04 in controls). No biochemical or histological signs of tissue damage were observed in the heart of T3-treated rats. These results demonstrated that T3 treatment is associated with a re-entry of cardiomyocytes into the cell cycle and so may be important for the development of future therapeutic strategies aimed at inducing proliferation of cardiomyocytes. Topics: Animals; Bromodeoxyuridine; Cardiomegaly; Cell Cycle; Cell Nucleus; Creatine Kinase; Creatinine; Cyclin D1; DNA; DNA Replication; L-Lactate Dehydrogenase; Male; Myocytes, Cardiac; Protein Transport; Rats; Rats, Inbred F344; RNA, Messenger; Triiodothyronine | 2006 |
HMG-CoA reductase inhibitor fluvastatin prevents angiotensin II-induced cardiac hypertrophy via Rho kinase and inhibition of cyclin D1.
HMG-CoA reductase inhibitors, so called statins, decrease cardiac events. Previous studies have shown that HMG-CoA reductase inhibitors inhibit cardiomyocyte hypertrophy in vitro and in vivo by blocking Rho isoprenylation. We have shown that the G1 cell cycle regulatory proteins cyclin D1 and Cdk4 play important roles in cardiomyocyte hypertrophy. However, the relation between Rho and cyclin D1 in cardiomyocyte is unknown. To investigate whether HMG-CoA reductase inhibitors prevent cardiac hypertrophy through attenuation of Rho and cyclin D1, we studied the effect of fluvastatin on angiotensin II-induced cardiomyocyte hypertrophy in vitro and in vivo. Angiotensin II increased the cell surface area and [(3)H]leucine uptake of cultured neonatal rat cardiomyocytes and these changes were suppressed by fluvastatin treatment. Angiotensin II also induced activation of Rho kinase and increased cyclin D1, both of which were also significantly suppressed by fluvastatin. Specific Rho kinase inhibitor, Y-27632 inhibited angiotensin II-induced cardiomyocyte hypertrophy and increased cyclin D1. Overexpression of cyclin D1 by adenoviral gene transfer induced cardiomyocyte hypertrophy, as evidenced by increased cell size and increased protein synthesis; this hypertrophy was not diminished by concomitant treatment with fluvastatin. Infusion of angiotensin II to Wistar rats for 2 weeks induced hypertrophic changes in cardiomyocytes, and this hypertrophy was prevented by oral fluvastatin treatment. These results show that an HMG-CoA reductase inhibitor, fluvastatin, prevents angiotensin II-induced cardiomyocyte hypertrophy in part through inhibition of cyclin D1, which is linked to Rho kinase. This novel mechanism discovered for fluvastatin could be revealed how HMG-CoA reductase inhibitors are preventing cardiac hypertrophy. Topics: Adenoviridae Infections; Amides; Angiotensin II; Animals; Animals, Newborn; Cardiomegaly; Cells, Cultured; Cyclin D1; Electrophoresis, Polyacrylamide Gel; Enzyme Inhibitors; Fatty Acids, Monounsaturated; Fluvastatin; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Immunoblotting; Indoles; Intracellular Signaling Peptides and Proteins; Leucine; Male; Mevalonic Acid; Myocardium; Myocytes, Cardiac; Protein Serine-Threonine Kinases; Pyridines; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; rho-Associated Kinases; RNA, Messenger | 2006 |
Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice.
Restriction point transit and commitment to a new round of cell division is regulated by the activity of cyclin-dependent kinase 4 and its obligate activating partners, the D-type cyclins. In this study, we examined the ability of D-type cyclins to promote cardiomyocyte cell cycle activity. Adult transgenic mice expressing cyclin D1, D2, or D3 under the regulation of the alpha cardiac myosin heavy chain promoter exhibited high rates of cardiomyocyte DNA synthesis under baseline conditions. Cardiac injury in mice expressing cyclin D1 or D3 resulted in cytoplasmic cyclin D accumulation, with a concomitant reduction in the level of cardiomyocyte DNA synthesis. In contrast, cardiac injury in mice expressing cyclin D2 did not alter subcellular cyclin localization. Consequently, cardiomyocyte cell cycle activity persisted in injured hearts expressing cyclin D2, ultimately resulting in infarct regression. These data suggested that modulation of D-type cyclins could be exploited to promote regenerative growth in injured hearts. Topics: Age Factors; Animals; Animals, Newborn; Cardiomegaly; Coronary Disease; Cyclin D1; Cyclin D2; Cyclin D3; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinases; Cyclins; DNA Replication; Electrocoagulation; Fibroblasts; Gene Expression Regulation; Genetic Therapy; Heart Injuries; Isoproterenol; Ligation; Mice; Mice, Inbred DBA; Mice, Transgenic; Myocardial Infarction; Myocytes, Cardiac; Myosin Heavy Chains; Promoter Regions, Genetic; Proto-Oncogene Proteins; Recombinant Fusion Proteins | 2005 |
Expression of cyclin D1 and CDK4 causes hypertrophic growth of cardiomyocytes in culture: a possible implication for cardiac hypertrophy.
Differentiated cardiomyocytes have little capacity to proliferate and show the hypertrophic growth in response to alpha1-adrenergic stimuli via the Ras/MEK pathway. In this study, we investigated a role of cyclin D1 and CDK4, a positive regulator of cell cycle, in cultured neonatal rat cardiomyocyte hypertrophy. D-type cyclins including cyclin D1 were induced in cells stimulated by phenylephrine. This induction was inhibited by MEK inhibitor PD98059 and the dominant negative RasN17, but mimicked by expression of the constitutive active Ras61L. Over-expression of cyclin D1 and CDK4 using adenovirus gene transfer caused the hypertrophic growth of cardiomyocytes, as evidenced by an increase of the cell size as well as the amount of cellular protein and its rate of synthesis. However, the cyclin D1/CDK4 kinase activity was not up-regulated in cells treated by hypertrophic stimuli or in cells over-expressing the cyclin D1 and CDK4. Furthermore, a CDK inhibitor, p16, did not inhibit the hypertrophic growth of cardiomyocytes. These results clearly indicated that cyclin D1 and CDK4 have a role in hypertrophic growth of cardiomyocytes through a novel mechanism(s) which appears not to be related to its activity required for cell cycle progression. Topics: Actins; Adenoviridae; Adrenergic alpha-Agonists; Animals; Animals, Newborn; Atrial Natriuretic Factor; Cardiomegaly; Cell Size; Cells, Cultured; Culture Media, Serum-Free; Cyclin D1; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinases; Heart; Myocardium; Phenylephrine; Proto-Oncogene Proteins; ras Proteins; Rats; Rats, Sprague-Dawley; Recombinant Fusion Proteins | 2002 |