cyclin-d1 has been researched along with Atherosclerosis* in 9 studies
9 other study(ies) available for cyclin-d1 and Atherosclerosis
Article | Year |
---|---|
Circ_0010283/miR-377-3p/Cyclin D1 Axis Is Associated With Proliferation, Apoptosis, Migration, and Inflammation of Oxidized Low-density Lipoprotein-Stimulated Vascular Smooth Muscle Cells.
Circular RNAs have been reported as vital regulators and promising therapeutic targets in multiple human diseases, including atherosclerosis (AS). However, the functional roles of circ_0010283 in AS remain unclear. The real-time quantitative polymerase chain reaction was used to determine the expression levels of circ_0010283, microRNA (miR)-377-3p, and cyclin D1 (CCND1) in serum samples. The vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the in vitro cell model of AS. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide and clonal colony-forming assays were performed to assess cell proliferation. The apoptosis was determined by flow cytometry assay. The migration of VSMCs was examined by wound healing and transwell assays. Western blot analysis was used to quantify protein expression. The association among circ_0010283, miR-377-3p, and CCND1 was confirmed by dual-luciferase reporter assay. We found that the serum level of circ_0010283 was upregulated in patients with AS and treatment with ox-LDL also increased the expression of circ_0010283 in VSMCs. Treatment with ox-LDL also increased proliferation, migration, and inflammation while inhibited apoptosis in VSMCs, which was overturned by silencing of circ_0010283. Moreover, miR-377-3p was a target of circ_0010283, and downregulation of miR-377-3p counteracted circ_0010283 silencing-induced effects on ox-LDL-stimulated VSMCs. The overexpression of miR-377-3p inhibited proliferation, migration, and inflammation while induced apoptosis of VSMCs by targeting CCND1. CCND1 was a target of miR-377-3p, and circ_0010283 acted as the miR-377-3p sponge to increase CCND1 expression. Circ_0010283 regulated proliferation, apoptosis, migration, and inflammation of ox-LDL-stimulated VSMCs through modulating miR-377-3p and CCND1. Topics: Aged; Apoptosis; Atherosclerosis; Case-Control Studies; Cell Movement; Cell Proliferation; Cells, Cultured; Cyclin D1; Female; Gene Expression Regulation; Humans; Inflammation; Lipoproteins, LDL; Male; MicroRNAs; Middle Aged; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; RNA, Circular; Signal Transduction | 2021 |
Essential role of protein kinase C βI in icariin-mediated protection against atherosclerosis.
This study aimed to clarify the superior beneficial effects of icariin on atherosclerosis, as well as to explore the possible underlying mechanisms for its effect via the modulation of protein kinase C βI.. Lipid profiles were determined while dissected aortas were prepared of ApoE-/- mice. The expression of protein kinase C βI and phosphorylation of protein kinase C βI were determined by immunohistochemistry analysis. Human vascular smooth muscle cells were subjected to ox-LDL stimulation. MTS assay was conducted to detect cell proliferation. A transwell migration assay was performed to evaluate migration capacity. Flow cytometric analysis was used to determine cell cycle progression. Quantitative real-time PCR and western blot were performed to assess gene expression.. Icariin significantly alleviated atherogenesis, as well as protein levels of protein kinase C βI and phosphorylated protein kinase C βI in the aorta. Icariin effectively suppressed cell proliferation and migration. protein kinase C βI, cyclin D1 and matrix metalloproteinase-9 were modulated in response to treatment with icariin. Protein kinase C activator reversed the protective effect of icariin on human vascular smooth muscle cells against ox- low-density lipoprotein, protein kinase C β inhibitor augmented the inhibitory effect of icariin.. Our findings highlight the probable application of icariin in atherosclerotic therapy and reveal that protein kinase C βI acts as a crucial regulator in the anti-atherosclerotic action of icariin. Topics: Animals; Aorta; Apolipoproteins E; Atherosclerosis; Cell Movement; Cell Proliferation; Cells, Cultured; Cyclin D1; Epimedium; Flavonoids; Humans; Lipoproteins, LDL; Matrix Metalloproteinase 9; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Plant Extracts; Protein Kinase C | 2021 |
IMM-H007, a novel small molecule inhibitor for atherosclerosis, represses endothelium inflammation by regulating the activity of NF-κB and JNK/AP1 signaling.
Endothelium inflammation has become a major risk factor for pathological development of atherosclerosis. IMM-H007 (H007), a small molecule compound, is previously reported to reduce inflammatory atherosclerosis. However, the regulatory role of H007 in endothelium inflammation is still unclear. Here, we characterize H007 as a critical repressor in regulation of endothelium inflammation. We find that H007 significantly inhibits monocyte adhesion to endothelial cells and its transendothelial migration. Mechanistically, H007 markedly represses TNFα-induced IκBα degradation and NF-κB nuclear translocation, therefore leading to NF-κB-mediated inflammatory suppression. Moreover, another inflammatory signaling JNK/c-Jun, which is always co-activated with NF-κB in response to pro-inflammatory stimuli, is also found to be restrained by H007 through reducing its phosphorylation status. Thus, we conclude that H007 negatively regulates endothelium inflammation through inactivating NF-κB and JNK/AP1 signaling. More importantly, this study provides us a new insight into understanding the molecular basis by which H007 regulates inflammatory atherosclerosis. Topics: Adenosine; Anti-Inflammatory Agents; Atherosclerosis; Chemokine CCL2; Cyclin D1; Endothelium, Vascular; Human Umbilical Vein Endothelial Cells; Humans; Interleukin-1beta; Interleukin-6; MAP Kinase Kinase 4; NF-kappa B; Signal Transduction; THP-1 Cells; Transcription Factor AP-1; Vascular Cell Adhesion Molecule-1 | 2019 |
Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice.
Atherosclerosis (AS) is the key cause of many cardiovascular and cerebrovascular diseases. The inflammatory response and lipid metabolism disorders contribute to the development and progression of AS. This work aims to study the anti-inflammatory effect and mechanism of low molecular weight fucoidan (LMWF) obtained from Saccharina japonica on atherosclerosis in apoE-knockout mice. The experimental results showed that LMWF statistically decreased the levels of triglyceride (TRIG) and oxidative low-density lipoproteins (ox-LDL) and stabilized established atherosclerotic lesions. LMWF ameliorated the inflammatory response by down regulating IL-6 and by up regulating IL-10 transcriptional levels, and LMWF returned p-JNK and cyclin D1 to normal levels. Moreover, LMWF increased the mRNA level of CD11b in the aorta and suppressed the expression of CD11b in the intimal layer of the aorta. Therefore, LMWF prevented macrophages from developing into foam cells and prevented SMCs from migrating into the intimal layer of the aorta, which inhibited the formation of atherosclerotic plaques; and ameliorated the occurrence and development of AS. Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Atherosclerosis; Cyclin D1; Disease Models, Animal; Gene Expression Regulation; Humans; Interleukin-10; Interleukin-6; Lipid Metabolism; Lipid Peroxidation; MAP Kinase Kinase 4; Mice; Mice, Knockout; Molecular Weight; Phaeophyceae; Polysaccharides | 2018 |
DNA-dependent protein kinase (DNA-PK) permits vascular smooth muscle cell proliferation through phosphorylation of the orphan nuclear receptor NOR1.
Being central part of the DNA repair machinery, DNA-dependent protein kinase (DNA-PK) seems to be involved in other signalling processes, as well. NOR1 is a member of the NR4A subfamily of nuclear receptors, which plays a central role in vascular smooth muscle cell (SMC) proliferation and in vascular proliferative processes. We determined putative phosphorylation sites of NDA-PK in NOR1 and hypothesized that the enzyme is able to modulate NOR1 signalling and, this way, proliferation of SMC.. Cultured human aortic SMC were treated with the specific DNA-PK inhibitor NU7026 (or siRNA), which resulted in a 70% inhibition of FCS-induced proliferation as measured by BrdU incorporation. Furthermore, FCS-stimulated up-regulation of NOR1 protein as well as the cell-cycle promoting proteins proliferating cell nuclear antigen (PCNA), cyclin D1, and hyperphosphorylation of the retinoblastoma protein were prevented by DNA-PK inhibition. Co-immunoprecipitation studies from VSM cell lysates demonstrated that DNA-PK forms a complex with NOR1. Mutational analysis and kinase assays demonstrated that NOR1 is a substrate of DNA-PK and is phosphorylated in the N-terminal domain. Phosphorylation resulted in post-transcriptional stabilization of the protein through prevention of its ubiquitination. Active DNA-PK and NOR1 were found predominantly expressed within the neointima of human atherosclerotic tissue specimens. In mice, inhibition of DNA-PK significantly attenuated neointimal lesion size 3 weeks after wire-injury.. DNA-PK directly phosphorylates NOR-1 and, this way, modulates SMC proliferation. These data add to our understanding of vascular remodelling processes and opens new avenues for treatment of vascular proliferative diseases. Topics: Animals; Atherosclerosis; Cell Proliferation; Cells, Cultured; Cyclin D1; Disease Models, Animal; DNA-Activated Protein Kinase; DNA-Binding Proteins; Enzyme Inhibitors; Femoral Artery; Humans; Male; Membrane Transport Proteins; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Nuclear Proteins; Phosphorylation; Proliferating Cell Nuclear Antigen; Protein Stability; Proteolysis; Retinoblastoma Protein; RNA Interference; Signal Transduction; Time Factors; Transfection; Ubiquitination; Vascular Remodeling; Vascular System Injuries | 2015 |
SASH1, a new potential link between smoking and atherosclerosis.
We have previously reported that SASH1 expression is increased in circulating human monocytes from smokers and was positively correlated with the number of carotid atherosclerotic plaques. The aim of this study was to further validate the link between smoking, SASH1 and atherosclerosis within the vascular wall and to assess the impact of SASH1 expression on endothelial cell functions.. Human carotids with atherosclerotic plaques were obtained from 58 patients (45 of them with known smoking status: smoker, non-smoker, ex-smokers), and were processed for gene expression analyses and immunostaining. To investigate its function, SASH1 was silenced in human aortic endothelial cells (HAECs) using two different siRNA and subcellular localization of SASH1 was determined by immunostaining and subcellular fractionation. Subsequently the transcriptomic analyses and functional experiments (wound healing, WST-1 proliferation or Matrigel assays) were performed to characterize SASH1 function.. SASH1 was expressed in human vascular cells (HAECs, smooth muscle cells) and in monocytes/macrophages. Its tissue expression was significantly higher in the atherosclerotic carotids of smokers compared to non-smokers (p < 0.01). In HAECs, SASH1 was expressed mostly in the cytoplasm and SASH1 knockdown resulted in an increased cell migration, proliferation and angiogenesis. Transcriptomic and pathway analyses showed that SASH1 silencing results in a decreased CYP1A1 expression possibly through the inhibition of TP53 activity.. We showed that SASH1 expression is increased in atherosclerotic carotids in smokers and its silencing affects endothelial angiogenic functions; therefore we provide a potential link between smoking and atherosclerosis through SASH1 expression. Topics: Aged; Aged, 80 and over; Aorta; Atherosclerosis; Cell Cycle; Cell Line; Cell Movement; Cell Proliferation; Cyclin D1; Cyclin D3; Cytochrome P-450 CYP1A1; Endothelial Cells; Female; Gene Expression Regulation; Gene Silencing; Humans; Male; Middle Aged; Neovascularization, Pathologic; RNA, Small Interfering; Smoking; Transcriptome; Tumor Suppressor Protein p53; Tumor Suppressor Proteins | 2015 |
MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of disease progression in atherosclerosis. Cell proliferation is regulated by cell cycle regulatory proteins. MicroRNAs (miR) have been reported to act as important gene regulators and play essential roles in the proliferation and migration of VSMCs in a cardiovascular disease. However, the roles and mechanisms of miRs in VSMCs and neointimal formation are far from being fully understood. In this study, cell cycle-specific cyclin D1 was found to be a potential target of miR-365 by direct binding. Through an in vitro experiment, we showed that exogenous miR-365 overexpression reduced VSMC proliferation and proliferating cell nuclear antigen (PCNA) expression, while miR-365 was observed to block G1/S transition in platelet-derived growth factor-bb (PDGF-bb)-induced VSMCs. In addition, the proliferation of VSMCs by various stimuli, including PDGF-bb, angiotensin II (Ang II), and serum, led to the downregulation of miR-365 expression levels. The expression of miR-365 was confirmed in balloon-injured carotid arteries. Taken together, our results suggest an anti-proliferative role for miR-365 in VSMC proliferation, at least partly via modulating the expression of cyclin D1. Therefore, miR-365 may influence neointimal formation in atherosclerosis patients. Topics: Angiotensin II; Animals; Atherosclerosis; Becaplermin; Carotid Arteries; Carotid Artery Injuries; Cell Division; Cell Movement; Cell Proliferation; Cells, Cultured; Cyclin D1; Down-Regulation; MicroRNAs; Muscle, Smooth, Vascular; Neointima; Proliferating Cell Nuclear Antigen; Protein Binding; Proto-Oncogene Proteins c-sis; Rats; RNA-Binding Proteins; S Phase Cell Cycle Checkpoints | 2014 |
CD59 underlines the antiatherosclerotic effects of C-phycocyanin on mice.
The effects of C-phycocyanin (C-PC) on atherosclerosis and the regulatory effects of CD59 gene on anti-atherosclerotic roles of C-PC were investigated. Apolipoprotein E knockout (ApoE(-/-)) mice were randomly divided into four groups: control group, C-PC treatment group, CD59 transfection group and C-PC+CD59 synergy group. The mice were fed with high-fat-diet and treated with drug intervention at the same time. Results showed the atherosclerotic mouse model was successfully established. CD59 was over-expressed in blood and tissue cells. Single CD59 or C-PC could reduce blood lipid levels and promote the expression of anti-apoptotic Bcl-2 but inhibit pro-apoptotic Fas proteins in endothelial cells. The expression levels of cell cycle protein D1 (Cyclin D1) and mRNA levels of cyclin dependent protein kinase 4 (CDK4) in smooth muscle cells were restrained by CD59 and C-PC. CD59 or C-PC alone could inhibit the formation of atherosclerotic plaque by suppressing MMP-2 protein expression. In addition, C-PC could promote CD59 expression. So both CD59 and C-PC could inhibit the progress of atherosclerosis, and the anti-atherosclerotic effects of C-PC might be fulfilled by promoting CD59 expression, preventing smooth muscle cell proliferation and the apoptosis of endothelial cells, reducing blood fat levels, and at last inhibiting the development of atherosclerosis. Topics: Animals; Apolipoproteins E; Atherosclerosis; CD59 Antigens; Cell Proliferation; Cyclin D1; Cyclin-Dependent Kinase 4; Dietary Fats; Disease Models, Animal; Endothelial Cells; fas Receptor; Gene Expression Regulation; Mice; Mice, Knockout; Myocytes, Smooth Muscle; Phycocyanin; Plaque, Atherosclerotic; Proto-Oncogene Proteins c-bcl-2 | 2013 |
Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation.
Vascular smooth muscle cell (VSMC) proliferation is an important event in atherosclerosis and other vasculopathies. PDGF signaling is a key mediator of SMC proliferation, but the mechanisms that control its activity remain unclear. We previously identified a mutation in LDL receptor-related protein 6 (LRP6), LRP6(R611C), that causes early atherosclerosis. Examination of human atherosclerotic coronary arteries showed markedly increased expression of LRP6 and colocalization with PDGF receptor β (PDGFR-β). Further investigation showed that wild-type LRP6 inhibits but LRP6(R611C) promotes VSMC proliferation in response to PDGF. We found that wild-type LRP6 forms a complex with PDGFR-β and enhances its lysosomal degradation, functions that are severely impaired in LRP6(R611C). Further, we observed that wild-type and mutant LRP6 regulate cell-cycle activity by triggering differential effects on PDGF-dependent pathways. These findings implicate LRP6 as a critical modulator of PDGF-dependent regulation of cell cycle in smooth muscle and indicate that loss of this function contributes to development of early atherosclerosis in humans. Topics: Atherosclerosis; Cell Proliferation; Cyclin D1; Humans; Immunohistochemistry; LDL-Receptor Related Proteins; Low Density Lipoprotein Receptor-Related Protein-6; Muscle, Smooth, Vascular; Platelet-Derived Growth Factor; Receptor, Platelet-Derived Growth Factor beta; RNA, Messenger; Signal Transduction | 2011 |