cyclic-gmp and Visceral-Pain

cyclic-gmp has been researched along with Visceral-Pain* in 4 studies

Other Studies

4 other study(ies) available for cyclic-gmp and Visceral-Pain

ArticleYear
Intestinal neuropod cell GUCY2C regulates visceral pain.
    The Journal of clinical investigation, 2023, 02-15, Volume: 133, Issue:4

    Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.

    Topics: Animals; Cyclic GMP; Enteroendocrine Cells; Humans; Intestines; Mice; Receptors, Enterotoxin; Receptors, Guanylate Cyclase-Coupled; Signal Transduction; Visceral Pain

2023
Guanylyl cyclase C ameliorates visceral pain: an unsuspected link.
    The Journal of clinical investigation, 2023, 02-15, Volume: 133, Issue:4

    Visceral pain associated with irritable bowel syndrome afflicts 15% of the US population. Although treatments are limited, guanylyl cyclase C (GUCY2C) agonists alleviate pain and constipation. Until now, it was assumed that the activation of GUCY2C and production of cGMP in enterocytes stimulated fluid secretion and reduced visceral sensation. The recent discovery that a subtype of enteroendocrine cells (EECs) known as neuropod cells synapse with submucosal neurons unveiled a pathway for communicating gut signals to the nervous system. In this issue of the JCI, Barton et al. report that GUCY2C is enriched in neuropod cells and is involved with sensory nerve firing. Selective deletion of GUCY2C in mouse models suggests that defective GUCY2C neuropod-cell signaling underlies visceral pain. These studies introduce possibilities for dissociating the secretory and analgesic effects of GUCY2C agonism. Although further work remains, unveiling the role of neuropod cells is a major step in understanding visceral pain.

    Topics: Animals; Cyclic GMP; Irritable Bowel Syndrome; Mice; Receptors, Enterotoxin; Signal Transduction; Visceral Pain

2023
The antinociceptive effects of magnesium sulfate and MK-801 in visceral inflammatory pain model: The role of NO/cGMP/K(+)ATP pathway.
    Pharmaceutical biology, 2015, Volume: 53, Issue:11

    Magnesium and MK-801 (dizocilpine), antagonists of N-methyl-d-aspartate receptors, are involved in the processing of pain.. This study determines whether magnesium sulfate (MS) and MK-801 affects visceral inflammatory pain and determines a possible mechanism of action.. Analgesic activity was assessed using the acetic acid-induced writhing test in rats. MS (1-45 mg/kg) or MK-801 (0.005-0.03 mg/kg) was administrated subcutaneously (s.c.). To assess possible mechanisms of action, we examined the effects of l-NAME (10 mg/kg, intraperitoneal), methylene blue (0.5 mg/kg, s.c.), and glibenclamide (3 mg/kg, s.c.) on the effect of MS or MK-801.. MS and MK-801 showed biphasic and linear dose-response pattern, respectively. MS reduces the number of writhing on the dose of 1, 5, and 15 mg/kg by 60, 50, and 78%, respectively, while it has no effects on the doses of 30 and 45 mg/kg. MK-801 (0.005-0.03 mg/kg) showed decrease in the number of writhing by 33-79%. The mean effective doses of MS and MK-801 were 6.6 (first phase) and 0.009 mg/kg, respectively. Both drugs did not impair the rotarod performance. l-NAME, methylene blue, and glybenclamide reduced the effect of MK-801 by 100, 43, and 64%, respectively, but not the effect of MS.. The results suggest that MS and MK-801 may be useful analgesics in the management of visceral inflammatory pain, at doses that do not induce motor impairment. The modulation of NO/cGMP/K+ATP pathway plays an important role in the antinociceptive mechanism of MK-801, but does not contribute to the antinociceptive effect of MS.

    Topics: Adenosine Triphosphate; Analgesics; Animals; Cyclic GMP; Dizocilpine Maleate; Injections, Subcutaneous; Magnesium Sulfate; Male; Nitric Oxide; Rats; Rats, Wistar; Signal Transduction; Visceral Pain

2015
Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation.
    Pain, 2013, Volume: 154, Issue:9

    The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity.

    Topics: Acetylcholine; Acetylglucosamine; Adenocarcinoma; Animals; Cell Differentiation; Cell Line, Tumor; Colitis; Colon; Colorectal Neoplasms; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Female; Gastrointestinal Diseases; Gene Expression Regulation, Neoplastic; Guanylate Cyclase; Humans; Hyperalgesia; Intestinal Mucosa; Male; Mast Cells; Morphine; Multidrug Resistance-Associated Proteins; Natriuretic Peptides; Organic Anion Transporters, Sodium-Independent; Peroxidase; Rats; Rats, Sprague-Dawley; Rats, Wistar; Restraint, Physical; RNA, Messenger; Signal Transduction; Trinitrobenzenesulfonic Acid; Visceral Pain

2013