cyclic-gmp and Trauma--Nervous-System

cyclic-gmp has been researched along with Trauma--Nervous-System* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and Trauma--Nervous-System

ArticleYear
Off-Target Effect of Sildenafil on Postsurgical Erectile Dysfunction: Alternate Pathways and Localized Delivery System.
    The journal of sexual medicine, 2016, Volume: 13, Issue:12

    There is no consensus on the best oral phosphodiesterase type 5 inhibitor (PDE5I) for patients undergoing penile rehabilitation after surgical nerve injury.. To determine the mechanism of PDE5I on cultured neuronal cells and the effectiveness of local drug delivery using nanospheres (NSPs) to sites of nerve injury in a rat model of bilateral cavernous nerve injury (BCNI).. The effects of sildenafil, tadalafil, and vardenafil on cyclic adenosine monophosphate, cyclic guanosine monophosphate, and cell survival after exposure to hypoxia and H. Viability of neuronal cells was measured. Intracavernous pressure changes after cavernous nerve electrostimulation and expression of neurofilament, nitric oxide synthase, and actin in mid-shaft of penis were analyzed 14 days after injury.. Sildenafil and rolipram significantly decreased cell death after exposure to H. Sildenafil showed the most profound neuroprotective effect compared with tadalafil and vardenafil. Sildenafil- or rolipram-loaded NSP delivery to the site of nerve injury prevented erectile dysfunction and led to increased neurofilament, nitric oxide synthase, smooth muscle content in rat penile tissue after BCNI.

    Topics: Animals; Cyclic GMP; Erectile Dysfunction; Humans; Hydrogen Peroxide; Male; Muscle, Smooth; Nitric Oxide Synthase; Penile Erection; Penis; Phosphodiesterase 5 Inhibitors; Prostatectomy; Rats; Rats, Sprague-Dawley; Sildenafil Citrate; Trauma, Nervous System

2016
ATP and NO dually control migration of microglia to nerve lesions.
    Developmental neurobiology, 2009, Volume: 69, Issue:1

    Microglia migrate rapidly to lesions in the central nervous system (CNS), presumably in response to chemoattractants including ATP released directly or indirectly by the injury. Previous work on the leech has shown that nitric oxide (NO), generated at the lesion, is both a stop signal for microglia at the lesion and crucial for their directed migration from hundreds of micrometers away within the nerve cord, perhaps mediated by a soluble guanylate cyclase (sGC). In this study, application of 100 microM ATP caused maximal movement of microglia in leech nerve cords. The nucleotides ADP, UTP, and the nonhydrolyzable ATP analog AMP-PNP (adenyl-5'-yl imidodiphosphate) also caused movement, whereas AMP, cAMP, and adenosine were without effect. Both movement in ATP and migration after injury were slowed by 50 microM reactive blue 2 (RB2), an antagonist of purinergic receptors, without influencing the direction of movement. This contrasted with the effect of the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-oxyl-3-oxide), which misdirected movement when applied at 1 mM. The cPTIO reduced cGMP immunoreactivity without changing the immunoreactivity of eNOS (endothelial nitric oxide synthase), which accompanies increased NOS activity after nerve cord injury, consistent with involvement of sGC. Moreover, the sGC-specific inhibitor LY83583 applied at 50 microM had a similar effect, in agreement with previous results with methylene blue. Taken together, the experiments support the hypothesis that ATP released directly or indirectly by injury activates microglia to move, whereas NO that activates sGC directs migration of microglia to CNS lesions.

    Topics: Adenosine Triphosphate; Aminoquinolines; Analysis of Variance; Animals; Cell Movement; Cyclic GMP; Cyclic N-Oxides; Dose-Response Relationship, Drug; Enzyme Inhibitors; Free Radical Scavengers; Imidazoles; In Vitro Techniques; Leeches; Microglia; Nitric Oxide; Nucleotides; Trauma, Nervous System; Triazines

2009