cyclic-gmp and Radiculopathy

cyclic-gmp has been researched along with Radiculopathy* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and Radiculopathy

ArticleYear
Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats.
    Behavioural brain research, 2010, Mar-17, Volume: 208, Issue:1

    The aim of the present study was to test the hypothesis that the TRPV4-NO-cGMP-PKG cascade is involved in the maintenance of thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rats. CCD rats showed thermal hyperalgesia and increased nitrite production. Intrathecal administration of ruthenium red (TRPV4 antagonist, 0.1-1 nmol), TRPV4 antisense ODN (TRPV4 AS, 40 microg, daily for 7 days), N(G)-L-nitro-arginine methyl ester (l-NAME, inhibitor of NO synthase, 30-300 nmol), 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor, 50-100 nmol) or 8-(4-Chlorophenylthio) guanosine 3',5'-cyclic Monophosphothioate, Rp-Isomer sodium salt (Rp-8-pCPT-cGMPS, a PKG inhibitor, 25-50 nmol) induced a significant (P<0.001) and dose-dependent increase in the paw withdrawal latency (PWL) compared with control rats, respectively. Ruthenium red (1 nmol), TRPV4 AS (40 microg, daily for 7 days) or L-NAME (300 nmol) decreased nitrite (an index of nitric oxide formation) in the DRG of CCD rats. In addition, the phorbol ester 4alpha-phorbol 12,13-didecanoate (4alpha-PDD, TRPV4 synthetic activator, 1 nmol), co-administered with L-NAME (300 nmol), attenuated the suppressive effect of L-NAME on CCD-induced thermal hyperalgesia and nitrite production. Our data suggested that the TRPV4-NO-cGMP-PKG pathway could be involved in CCD-induced thermal hyperalgesia.

    Topics: Animals; Behavior, Animal; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Ganglia, Spinal; Hyperalgesia; Male; Nitric Oxide; Nitrites; Oligodeoxyribonucleotides, Antisense; Pain Threshold; Protein Kinase C; Radiculopathy; Rats; Rats, Wistar; Ruthenium; Signal Transduction; Statistics, Nonparametric; TRPV Cation Channels

2010
cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression.
    Journal of neurophysiology, 2006, Volume: 95, Issue:1

    Numerous studies have implicated the cAMP-protein kinase A (PKA) pathway in producing hyperexcitability of dorsal root ganglia (DRG) sensory neurons under conditions associated with pain. Evidence is presented for roles of both the cAMP-PKA and cGMP-protein kinase G (PKG) pathways in maintaining neuronal hyperexcitability and behavioral hyperalgesia in a neuropathic pain model: chronic compression of the DRG (CCD treatment). Lumbar DRGs were compressed by a steel rod inserted into the intervertebral foramen. Thermal hyperalgesia was revealed by shortened latencies of foot withdrawal to radiant heat. Intracellular recordings were obtained in vitro from lumbar ganglia after in vivo DRG compression. Activators of the cAMP-PKA pathway, 8-Br-cAMP and Sp-cAMPS, and of the cGMP-PKG pathway, 8-Br-cGMP and Sp-cGMPS, increased the hyperexcitability of DRG neurons already produced by CCD treatment, as shown by further decreases in action potential threshold and increased repetitive discharge during depolarization. The adenylate cyclase inhibitor, SQ22536, the PKA antagonist, Rp-cAMPS, the guanylate cyclase inhibitor, ODQ, and the PKG inhibitor, Rp-8-pCPT-cGMPS, reduced the hyperexcitability of CCD DRG neurons. In vivo application of PKA and PKG antagonists transiently depressed behavioral hyperalgesia induced by CCD treatment. Unexpectedly, application of these agonists and antagonists to ganglia of naïve, uninjured animals had little effect on electrophysiological properties of DRG neurons and no effect on foot withdrawal, suggesting that sensitizing actions of these pathways in the DRG are enabled by prior injury or stress. The only effect observed in uncompressed ganglia was modest depolarization of DRG neurons by PKA and PKG agonists. CCD treatment also depolarized DRG neurons, but CCD-induced depolarization was not affected by agonists or antagonists of these pathways.

    Topics: Action Potentials; Animals; Cyclic AMP; Cyclic GMP; Ganglia, Spinal; Hyperalgesia; Male; Neurons, Afferent; Radiculopathy; Rats; Rats, Sprague-Dawley

2006