cyclic-gmp and Learning-Disabilities

cyclic-gmp has been researched along with Learning-Disabilities* in 6 studies

Reviews

1 review(s) available for cyclic-gmp and Learning-Disabilities

ArticleYear
Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications.
    Metabolic brain disease, 2010, Volume: 25, Issue:1

    Cyclic GMP (cGMP) modulates important cerebral processes including some forms of learning and memory. cGMP pathways are strongly altered in hyperammonemia and hepatic encephalopathy (HE). Patients with liver cirrhosis show reduced intracellular cGMP in lymphocytes, increased cGMP in plasma and increased activation of soluble guanylate cyclase by nitric oxide (NO) in lymphocytes, which correlates with minimal HE assessed by psychometric tests. Activation of soluble guanylate cyclase by NO is also increased in cerebral cortex, but reduced in cerebellum, from patients who died with HE. This opposite alteration is reproduced in vivo in rats with chronic hyperammonemia or HE. A main pathway modulating cGMP levels in brain is the glutamate-NO-cGMP pathway. The function of this pathway is impaired both in cerebellum and cortex of rats with hyperammonemia or HE. Impairment of this pathway is responsible for reduced ability to learn some types of tasks. Restoring the pathway and cGMP levels in brain restores learning ability. This may be achieved by administering phosphodiesterase inhibitors (zaprinast, sildenafil), cGMP, anti-inflammatories (ibuprofen) or antagonists of GABAA receptors (bicuculline). These data support that increasing cGMP by safe pharmacological means may be a new therapeutic approach to improve cognitive function in patients with minimal or clinical HE.

    Topics: Animals; Brain; Cyclic GMP; Glutamic Acid; Hepatic Encephalopathy; Humans; Hyperammonemia; Learning Disabilities; Nitric Oxide; Phosphodiesterase Inhibitors; Rats; Signal Transduction

2010

Other Studies

5 other study(ies) available for cyclic-gmp and Learning-Disabilities

ArticleYear
Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy.
    Journal of neuroinflammation, 2016, 09-13, Volume: 13, Issue:1

    Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE). Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats with HE whether reducing peripheral inflammation with anti-TNF-α (1) prevents cognitive impairment and motor in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances the understanding of mechanisms linking neuroinflammation and increased extracellular GABA.. Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia activation and TNF-α and IL-1β were analyzed by immunohistochemistry. Membrane expression of the GABA transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task.. PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-α and IL-1β. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability.. Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3 membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients with HE

    Topics: Animals; Anti-Inflammatory Agents; Cerebellum; Cyclic GMP; Cytokines; Dinoprostone; Disease Models, Animal; Extracellular Fluid; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Glial Fibrillary Acidic Protein; Hepatic Encephalopathy; Inflammation; Infliximab; Learning Disabilities; Male; Maze Learning; Psychomotor Disorders; Rats; Rats, Wistar

2016
The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice.
    Journal of psychopharmacology (Oxford, England), 2012, Volume: 26, Issue:10

    Several phosphodiesterase inhibitors (PDEis) improve cognition, suggesting that an increase in brain cAMP and cGMP facilitates learning and memory. Since extinction of drug-seeking behavior requires associative learning, consolidation and formation of new memory, the present study investigated the efficacy of three different PDEis in the extinction of cocaine-induced conditioned place preference (CPP) in B6129S mice. Mice were conditioned by escalating doses of cocaine which was resistant to extinction by free exploration. Immediately following each extinction session mice received (a) saline/vehicle, (b) rolipram (PDE4 inhibitor), (c) BAY-73-6691 (PDE9 inhibitor) or (d) papaverine (PDE10A inhibitor). Mice that received saline/vehicle during extinction training showed no reduction in CPP for >10 days. BAY-73-6691 (a) dose-dependently increased cGMP in hippocampus and amygdala, (b) significantly facilitated extinction and (c) diminished the reinstatement of cocaine CPP. Rolipram, which selectively increased brain cAMP levels, and papaverine which caused increases in both cAMP and cGMP levels, had no significant effect on the extinction of cocaine CPP. The results suggest that increase in hippocampal and amygdalar cGMP levels via blockade of PDE9 has a prominent role in the consolidation of extinction learning.

    Topics: 3',5'-Cyclic-AMP Phosphodiesterases; Amygdala; Animals; Association Learning; Behavior, Animal; Cocaine; Cyclic GMP; Dose-Response Relationship, Drug; Extinction, Psychological; Hippocampus; Learning Disabilities; Male; Memory, Long-Term; Mice; Mice, 129 Strain; Molecular Targeted Therapy; Nerve Tissue Proteins; Neurons; Neurotoxicity Syndromes; Phosphodiesterase Inhibitors; Pyrazoles; Pyrimidines; Spatial Behavior

2012
Developmental exposure to polychlorinated biphenyls PCB153 or PCB126 impairs learning ability in young but not in adult rats.
    The European journal of neuroscience, 2008, Volume: 27, Issue:1

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants present in the food chain and in human blood and milk. Exposure to PCBs during pregnancy and lactation leads to cognitive impairment in children. The underlying mechanisms remain unclear. Some PCBs are endocrine disrupters. The aim of this work was to assess whether exposure of rats to PCB126 (dioxin-like) or PCB153 (non-dioxin-like) during pregnancy and lactation affects the ability of the pups to learn a Y maze conditional discrimination task and/or the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in vivo when the rats are young (3 months) or adult (7-8 months). After finishing the learning experiments, the function of the pathway was analysed in the same rats by in vivo brain microdialysis. The results obtained show that perinatal exposure to PCB153 or PCB126: (1) impairs learning ability in young but not in adult rats, (2) impairs the glutamate-NO-cGMP pathway function in cerebellum in vivo in young but not in adult rats and (3) affect these parameters in males and females similarly. PCB126 is around 10 000-fold more potent than PCB153. In control rats the function of the glutamate-NO-cGMP pathway and learning ability are lower in adult than in young rats. These age-related differences are not present in rats exposed to PCBs. The impairment of the glutamate-NO-cGMP pathway function induced at young age by developmental exposure to the PCBs could be one of the mechanisms contributing to the cognitive impairment found in children whose mothers ingested PCB-contaminated food during pregnancy and lactation.

    Topics: Aging; Analysis of Variance; Animals; Animals, Newborn; Behavior, Animal; Cerebellum; Cyclic GMP; Embryo, Mammalian; Female; Glutamic Acid; Learning Disabilities; Maze Learning; Nitric Acid; Polychlorinated Biphenyls; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Wistar

2008
Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition.
    Psychopharmacology, 2006, Volume: 183, Issue:4

    The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signal transduction pathway has been implicated in some forms of learning and memory. Recent findings suggest that inhibition of phosphodiesterase (PDE) enzymes that degrade cGMP may have memory-enhancing effects.. We examined whether treatment with sildenafil citrate, a PDE type 5 inhibitor, would attenuate a learning impairment induced by inhibition of NO synthase [60 mg/kg N(omega)-nitro-L-arginine methyl ester (L-NAME), i.p.].. Rats were pretrained in a one-way active avoidance of foot shock in a straight runway and, on the next day, received 15 training trials in a 14-unit T-maze, a task that has been shown to be sensitive to aging and impairment of central NO signaling systems. Combined treatments of L-NAME or saline and sildenafil (1.0, 1.5, 3.0, or 4.5 mg/kg, i.p.) or vehicle were given 30 and 15 min before training, respectively. Behavioral measures of performance included entries into incorrect maze sections (errors), run time from start to goal (latency), shock frequency, and shock duration.. Statistical analysis revealed that L-NAME impaired maze performance and that sildenafil (1.5 mg/kg) significantly attenuated this impairment. Control experiments revealed that administration of L-NAME alone did not significantly increase latencies in a one-way active avoidance test and that different doses of sildenafil alone did not significantly alter complex maze performance.. The results indicate that sildenafil may improve learning by modulating NO-cGMP signal transduction, a pathway implicated in age-related cognitive decline and neurodegenerative disease.

    Topics: Animals; Cyclic GMP; Electroshock; Enzyme Inhibitors; Learning Disabilities; Male; Maze Learning; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Phosphodiesterase Inhibitors; Piperazines; Purines; Rats; Rats, Inbred F344; Signal Transduction; Sildenafil Citrate; Sulfones

2006
Restoration of learning ability in hyperammonemic rats by increasing extracellular cGMP in brain.
    Brain research, 2005, Mar-02, Volume: 1036, Issue:1-2

    Intellectual function is impaired in patients with hyperammonemia and hepatic encephalopathy. Chronic hyperammonemia with or without liver failure impairs the glutamate-nitric oxide-cGMP pathway function in brain in vivo and reduces extracellular cGMP in brain as well as the ability of rats to learn a Y maze conditional discrimination task. We hypothesized that the decrease in extracellular cGMP may be responsible for the impairment in learning ability and intellectual function and that pharmacological modulation of the levels of cGMP may restore learning ability. The aim of this work was to try to reverse the impairment in learning ability of hyperammonemic rats by pharmacologically increasing extracellular cGMP in brain. We assessed whether learning ability may be restored by increasing extracellular cGMP in brain by continuous intracerebral administration of: (1) zaprinast, an inhibitor of the phosphodiesterase that degrades cGMP or (2) cGMP. We carried out tests of conditional discrimination learning in a Y maze with control and hyperammonemic rats treated or not with zaprinast or cGMP. Learning ability was reduced in hyperammonemic rats, which needed more trials than control rats to learn the task. Continuous intracerebral administration of zaprinast or cGMP restored the ability of hyperammonemic rats to learn this task. Pharmacological modulation of extracellular cGMP levels in brain may be a useful therapeutic approach to improve learning and memory performance in individuals in whom cognitive abilities are impaired by different reasons, for example in patients with liver disease who present hyperammonemia and decreased intellectual function.

    Topics: Animals; Brain; Cyclic GMP; Disease Models, Animal; Extracellular Fluid; Hepatic Encephalopathy; Hyperammonemia; Learning Disabilities; Male; Maze Learning; Memory Disorders; Phosphodiesterase Inhibitors; Purinones; Rats; Rats, Wistar; Recovery of Function; Treatment Outcome; Up-Regulation

2005