cyclic-gmp and Hyperoxia

cyclic-gmp has been researched along with Hyperoxia* in 19 studies

Other Studies

19 other study(ies) available for cyclic-gmp and Hyperoxia

ArticleYear
Aberrant cGMP signaling persists during recovery in mice with oxygen-induced pulmonary hypertension.
    PloS one, 2017, Volume: 12, Issue:8

    Bronchopulmonary dysplasia (BPD), a common complication of preterm birth, is associated with pulmonary hypertension (PH) in 25% of infants with moderate to severe BPD. Neonatal mice exposed to hyperoxia for 14d develop lung disease similar to BPD, with evidence of associated PH. The cyclic guanosine monophosphate (cGMP) signaling pathway has not been well studied in BPD-associated PH. In addition, there is little data about the natural history of hyperoxia-induced PH in mice or the utility of phosphodiesterase-5 (PDE5) inhibition in established disease. C57BL/6 mice were placed in room air or 75% O2 within 24h of birth for 14d, followed by recovery in room air for an additional 7 days (21d). Additional pups were treated with either vehicle or sildenafil for 7d during room air recovery. Mean alveolar area, pulmonary artery (PA) medial wall thickness (MWT), RVH, and vessel density were evaluated at 21d. PA protein from 21d animals was analyzed for soluble guanylate cyclase (sGC) activity, PDE5 activity, and cGMP levels. Neonatal hyperoxia exposure results in persistent alveolar simplification, RVH, decreased vessel density, increased MWT, and disrupted cGMP signaling despite a period of room air recovery. Delayed treatment with sildenafil during room air recovery is associated with improved RVH and decreased PA PDE5 activity, but does not have significant effects on alveolar simplification, PA remodeling, or vessel density. These data are consistent with clinical studies suggesting inconsistent effects of sildenafil treatment in infants with BPD-associated PH.

    Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Guanylate Cyclase; Hyperoxia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Mice; Mice, Inbred C57BL; Oxygen; Phosphodiesterase 5 Inhibitors; Pulmonary Alveoli; Pulmonary Artery; Signal Transduction; Sildenafil Citrate; Vascular Remodeling

2017
Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle.
    American journal of physiology. Lung cellular and molecular physiology, 2015, Sep-15, Volume: 309, Issue:6

    Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)]i) and contractility. However, the effects of hyperoxia on this axis in the context of Ca(2+)/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca(2+) responses to bronchoconstrictor agonists. Treatment with BAY 41-2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O2. Although 50% O2 did not alter sGCα1 or sGCβ1 expression, BAY 60-2770 did increase sGCβ1 expression. BAY 41-2272 and BAY 60-2770 blunted Ca(2+) responses to histamine in cells exposed to 50% O2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca(2+) responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.

    Topics: Benzoates; Biphenyl Compounds; Bronchi; Calcium Signaling; Cells, Cultured; Cyclic GMP; Drug Evaluation, Preclinical; Guanylate Cyclase; Humans; Hydrocarbons, Fluorinated; Hyperoxia; Muscle, Smooth; Myocytes, Smooth Muscle; Oxygen; Pyrazoles; Pyridines; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Trachea

2015
Disrupted pulmonary artery cyclic guanosine monophosphate signaling in mice with hyperoxia-induced pulmonary hypertension.
    American journal of respiratory cell and molecular biology, 2014, Volume: 50, Issue:2

    Pulmonary hypertension (PH) occurs in 25 to 35% of premature infants with significant bronchopulmonary dysplasia (BPD). Neonatal mice exposed to 14 days of hyperoxia develop BPD-like lung injury and PH. To determinne the impact of hyperoxia on pulmonary artery (PA) cyclic guanosine monophosphate (cGMP) signaling in a murine model of lung injury and PH, neonatal C57BL/6 mice were placed in room air, 75% O2 for 14 days (chronic hyperoxia [CH]) or 75% O2 for 24 hours, followed by 13 days of room air (acute hyperoxia with recovery [AHR]) with or without sildenafil. At 14 days, mean alveolar area, PA medial wall thickness (MWT), right ventricular hypertrophy (RVH), and vessel density were assessed. PA protein was analyzed for cGMP, soluble guanylate cyclase, and PDE5 activity. CH and AHR mice had RVH, but only CH mice had increased alveolar area and MWT and decreased vessel density. In CH and AHR PAs, soluble guanylate cyclase activity was decreased, and PDE5 activity was increased. In CH mice, sildenafil attenuated MWT and RVH but did not improve mean alveolar area or vessel density. In CH and AHR PAs, sildenafil decreased PDE5 activity and increased cGMP. Our results indicate that prolonged hyperoxia leads to lung injury, PH, RVH, and disrupted PA cGMP signaling. Furthermore, 24 hours of hyperoxia causes RVH and disrupted PA cGMP signaling that persists for 13 days. Sildenafil reduced RVH and restored vascular cGMP signaling but did not attenuate lung injury. Thus, hyperoxia can rapidly disrupt PA cGMP signaling in vivo with sustained effects, and concurrent sildenafil therapy can be protective.

    Topics: Animals; Cyclic GMP; Guanosine Monophosphate; Hyperoxia; Hypertension, Pulmonary; Lung; Lung Injury; Mice; Mice, Inbred C57BL; Piperazines; Pulmonary Artery; Purines; Signal Transduction; Sildenafil Citrate; Sulfones

2014
The effect of tumour necrosis factor-α and insulin on equine digital blood vessel function in vitro.
    Inflammation research : official journal of the European Histamine Research Society ... [et al.], 2014, Volume: 63, Issue:8

    Insulin and inflammatory cytokines may be involved in equine laminitis, which might be associated with digital vascular dysfunction. This study determined the effects of TNF-α and insulin on the endothelial-dependent relaxant responses of equine digital blood vessels and on equine digital vein endothelial cell (EDVEC) cGMP production.. Isolated rings of equine digital arteries (EDAs) and veins (EDVs) were obtained and EDVECs were cultured from horses euthanized at an abattoir.. The effect of incubation with TNF-α (10 ng/ml) and/or insulin (1,000 μIU/ml) for 1.5 h or overnight under hyperoxic and hypoxic conditions on carbachol (endothelium-dependent) induced relaxation was assessed. The time course and concentration dependency of the effect of TNF-α and the effect of insulin (1,000 μIU/ml) on EDVEC cGMP production was determined.. Incubation of EDAs overnight with TNF-α under hypoxic conditions resulted in endothelial-dependent vascular dysfunction. EDVs produced a more variable response. TNF-α increased EDVEC cGMP formation in a time- and concentration-dependent manner. Insulin had no significant effects.. There is a mismatch between the results obtained from isolated vessel rings and cultured endothelial cells suggesting TNF-α may reduce the biological effect of NO by reducing its bioavailability rather than its formation, leading to endothelial cell dysregulation.

    Topics: Animals; Arteries; Carbachol; Cells, Cultured; Cyclic GMP; Endothelial Cells; Horses; Hyperoxia; Hypoxia; In Vitro Techniques; Insulin; Metatarsophalangeal Joint; Tumor Necrosis Factor-alpha; Vasodilation; Veins

2014
Soluble guanylate cyclase modulates alveolarization in the newborn lung.
    American journal of physiology. Lung cellular and molecular physiology, 2013, Oct-15, Volume: 305, Issue:8

    Nitric oxide (NO) regulates lung development through incompletely understood mechanisms. NO controls pulmonary vascular smooth muscle cell (SMC) differentiation largely through stimulating soluble guanylate cyclase (sGC) to produce cGMP and increase cGMP-mediated signaling. To examine the role of sGC in regulating pulmonary development, we tested whether decreased sGC activity reduces alveolarization in the normal and injured newborn lung. For these studies, mouse pups with gene-targeted sGC-α1 subunit truncation were used because we determined that they have decreased pulmonary sGC enzyme activity. sGC-α1 knockout (KO) mouse pups were observed to have decreased numbers of small airway structures and lung volume compared with wild-type (WT) mice although lung septation and body weights were not different. However, following mild lung injury caused by breathing 70% O2, the sGC-α1 KO mouse pups had pronounced inhibition of alveolarization, as evidenced by an increase in airway mean linear intercept, reduction in terminal airway units, and decrease in lung septation and alveolar openings, as well as reduced somatic growth. Because cGMP regulates SMC phenotype, we also tested whether decreased sGC activity reduces lung myofibroblast differentiation. Cellular markers revealed that vascular SMC differentiation decreased, whereas myofibroblast activation increased in the hyperoxic sGC-α1 KO pup lung. These results indicate that lung development, particularly during hyperoxic injury, is impaired in mouse pups with diminished sGC activity. These studies support the investigation of sGC-targeting agents as therapies directed at improving development in the newborn lung exposed to injury.

    Topics: Animals; Animals, Newborn; Cell Differentiation; Cyclic GMP; Guanylate Cyclase; Hyperoxia; Lung Injury; Mice; Mice, Knockout; Myofibroblasts; Pulmonary Alveoli; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase

2013
Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn.
    American journal of physiology. Lung cellular and molecular physiology, 2012, Mar-15, Volume: 302, Issue:6

    In the pulmonary vasculature, cGMP levels are regulated by soluble guanylate cyclase (sGC) and phosphodiesterase 5 (PDE5). We previously reported that lambs with persistent pulmonary hypertension of the newborn (PPHN) demonstrate increased reactive oxygen species (ROS) and altered sGC and PDE5 activity, with resultant decreased cGMP. The objective of this study was to evaluate the effects of hydrocortisone on pulmonary vascular function, ROS, and cGMP in the ovine ductal ligation model of PPHN. PPHN lambs were ventilated with 100% O(2) for 24 h. Six lambs received 5 mg/kg hydrocortisone every 8 h times three doses (PPHN-hiHC), five lambs received 3 mg/kg hydrocortisone followed by 1 mg·kg(-1)·dose(-1) times two doses (PPHN-loHC), and six lambs were ventilated with O(2) alone (PPHN). All groups were compared with healthy 1-day spontaneously breathing lambs (1DSB). O(2) ventilation of PPHN lambs decreased sGC activity, increased PDE5 activity, and increased ROS vs. 1DSB lambs. Both hydrocortisone doses significantly improved arterial-to-alveolar ratios relative to PPHN lambs, decreased PDE5 activity, and increased cGMP relative to PPHN lambs. High-dose hydrocortisone also increased sGC activity, decreased PDE5 expression, decreased ROS, and increased total vascular SOD activity vs. PPHN lambs. These data suggest that hydrocortisone treatment in clinically relevant doses improves oxygenation and decreases hyperoxia-induced changes in sGC and PDE5 activity, increasing cGMP levels. Hydrocortisone reduces ROS levels in part by increasing SOD activity in PPHN lambs ventilated with 100% O(2.) We speculate that hydrocortisone increases cGMP by direct effects on sGC and PDE5 expression and by attenuating abnormalities induced by oxidant stress.

    Topics: Animals; Animals, Newborn; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Guanylate Cyclase; Humans; Hydrocortisone; Hyperoxia; Infant, Newborn; Oxidative Stress; Oxygen; Persistent Fetal Circulation Syndrome; Pulmonary Artery; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; Sheep; Soluble Guanylyl Cyclase; Superoxide Dismutase

2012
Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells.
    Antioxidants & redox signaling, 2012, Aug-01, Volume: 17, Issue:3

    Oxygen is a pulmonary vasodilator, but data suggest high O(2) concentrations impede that response. We previously reported 24 h of 100% O(2) increased phosphodiesterase 5 (PDE5) activity in fetal pulmonary artery smooth muscle cells (FPASMC) and in ventilated neonatal lambs. PDE5 degrades cyclic GMP (cGMP) and inhibits nitric oxide (NO)-mediated cGMP-dependent vasorelaxation. We sought to determine the mechanism by which hyperoxia initiates reactive oxygen species (ROS) production and regulates PDE5.. Thirty minutes of hyperoxia increased mitochondrial ROS versus normoxia (30.3±1.7% vs. 21.1±2.8%), but had no effect on cytosolic ROS, measured by roGFP, a ratiometric protein thiol redox sensor. Hyperoxia increased PDE5 activity (220±39%) and decreased cGMP responsiveness to NO (37±17%). Mitochondrial catalase overexpression attenuated hyperoxia-induced mitochondrial roGFP oxidation, compared to FPASMC infected with empty adenoviral vector (50±3% of control) or mitochondrial superoxide dismutase. MitoTEMPO, mitochondrial catalase, and DT-3, a cGMP-dependent protein kinase I alpha inhibitor, decreased PDE5 activity (32±13%, 26±21%, and 63±10% of control, respectively), and restored cGMP responsiveness to NO (147±16%,172±29%, and 189±43% of control, respectively). C57Bl6 mice exposed to 90%-100% O(2) for 45 min±mechanical ventilation had increased PA PDE5 activity (206±39% and 235±75%, respectively).. This is the first description that hyperoxia induces ROS in the mitochondrial matrix prior to the cytosol. Our results indicate that short hyperoxia exposures can produce significant changes in critical cellular signaling pathways.. These results indicate that mitochondrial matrix oxidant signals generated during hyperoxia, specifically H(2)O(2), activate PDE5 in a cGMP-dependent protein kinase-dependent manner in pulmonary vascular smooth muscle cells.

    Topics: Animals; Antioxidants; Catalase; Cell Hypoxia; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic GMP-Dependent Protein Kinases; Cyclic Nucleotide Phosphodiesterases, Type 5; Enzyme Activation; Fetus; Hydrogen Peroxide; Hyperoxia; Male; Mice; Mice, Inbred C57BL; Mitochondria, Muscle; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nitric Oxide; Organophosphorus Compounds; Oxidation-Reduction; Phosphodiesterase 5 Inhibitors; Piperazines; Piperidines; Pulmonary Artery; Purines; Sheep, Domestic; Sildenafil Citrate; Sulfones; Superoxide Dismutase

2012
Hypercapnic acidosis transiently weakens hypoxic pulmonary vasoconstriction without affecting endogenous pulmonary nitric oxide production.
    Intensive care medicine, 2012, Volume: 38, Issue:3

    Hypercapnic acidosis often occurs in critically ill patients and during protective mechanical ventilation; however, the effect of hypercapnic acidosis on endogenous nitric oxide (NO) production and hypoxic pulmonary vasoconstriction (HPV) presents conflicting results. The aim of this study is to test the hypothesis that hypercapnic acidosis augments HPV without changing endogenous NO production in both hyperoxic and hypoxic lung regions in pigs.. Sixteen healthy anesthetized pigs were separately ventilated with hypoxic gas to the left lower lobe (LLL) and hyperoxic gas to the rest of the lung. Eight pigs received 10% carbon dioxide (CO(2)) inhalation to both lung regions (hypercapnia group), and eight pigs formed the control group. NO concentration in exhaled air (ENO), nitric oxide synthase (NOS) activity, cyclic guanosine monophosphate (cGMP) in lung tissue, and regional pulmonary blood flow were measured.. There were no differences between the groups for ENO, Ca(2+)-independent or Ca(2+)-dependent NOS activity, or cGMP in hypoxic or hyperoxic lung regions. Relative perfusion to LLL (Q (LLL)/Q (T)) was reduced similarly in both groups when LLL hypoxia was induced. During the first 90 min of hypercapnia, Q (LLL)/Q (T) increased from 6% (1%) [mean (standard deviation, SD)] to 9% (2%) (p < 0.01), and then decreased to the same level as the control group, where Q (LLL)/Q (T) remained unchanged. Cardiac output increased during hypercapnia (p < 0.01), resulting in increased oxygen delivery (p < 0.01), despite decreased PaO(2) (p < 0.01)(.). Hypercapnic acidosis does not potentiate HPV, but rather transiently weakens HPV, and does not affect endogenous NO production in either hypoxic or hyperoxic lung regions.

    Topics: Acidosis, Respiratory; Animals; Blood Gas Analysis; Carbon Dioxide; Cyclic GMP; Exhalation; Hypercapnia; Hyperoxia; Nitric Oxide; Pulmonary Artery; Regional Blood Flow; Respiration, Artificial; Swine; Vasoconstriction

2012
The protective effect of overexpression of extracellular superoxide dismutase on nitric oxide bioavailability in the lung after exposure to hyperoxia stress.
    Experimental lung research, 2011, Volume: 37, Issue:1

    The objective of this study was to determine whether overexpression of human extracellular superoxide dismutase (hEC-SOD) can preserve nitric oxide (NO) bioavailability. In vitro studies examined the transient expression of hEC-SOD in mouse epithelial (C10) cells and its effect on extracellular accumulation of NO, intracellular cyclic guanosine monophosphate (cGMP), and nuclear factor kappa B (NF-κB) activation under normal and oxidative stress conditions. In vivo, newborn rabbits were treated with a plasmid containing hEC-SOD cDNA or vehicle plasmid alone, followed by exposure to hyperoxia (Fio₂ = 95% for 7 days). A third group was raised under normoxic conditions. cGMP and NF-κB activation were studied. There was significantly higher NO accumulation in cells expressing hEC-SOD exposed to oxidative stress compared with nontransfected cells. Accumulation of cGMP was significantly higher in cells expressing hEC-SOD. Oxidative stress induced NF-κB activation, which was abrogated by hEC-SOD expression. In vivo, there was significantly higher cGMP accumulation in transfected neonatal rabbit lung tissue at 3 and 7 days of hyperoxic exposure. Immunostaining for NF-κB, showed a marked increase in NF-κB concentration in nontreated neonatal rabbit lung tissue compared to transfected neonatal lung with hEC-SOD and the control air group. These results show that transient EC-SOD overexpression maintains NO bioavailability, which directly leads to maintenance of cGMP activity and reduction of NF-κB activation under oxidative stress.

    Topics: Animals; Animals, Newborn; Biological Availability; Cell Line; Cyclic GMP; Disease Models, Animal; Epithelial Cells; Hyperoxia; Lung; Lung Injury; Mice; NF-kappa B; Nitric Oxide; Oxidative Stress; Rabbits; Superoxide Dismutase; Time Factors; Transfection; Up-Regulation

2011
Apelin attenuates hyperoxic lung and heart injury in neonatal rats.
    American journal of respiratory and critical care medicine, 2010, Nov-15, Volume: 182, Issue:10

    Apelin, a potent vasodilator and angiogenic factor, may be a novel therapeutic agent in neonatal chronic lung disease, including bronchopulmonary dysplasia.. To determine the beneficial effect of apelin in neonatal rats with hyperoxia-induced lung injury, a model for premature infants with bronchopulmonary dysplasia.. The cardiopulmonary effects of apelin treatment (62 μg/kg/d) were studied in neonatal rats by exposure to 100% oxygen, using two treatment strategies: early concurrent treatment during continuous exposure to hyperoxia for 10 days and late treatment and recovery in which treatment was started on Day 6 after hyperoxic injury for 9 days and continued during the 9-day recovery period. We investigated in both models the role of the nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in apelin treatment by specific inhibition of the nitric oxide synthase activity with N(ω)-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/d).. Parameters investigated include survival, lung and heart histopathology, pulmonary fibrin deposition and inflammation, alveolar vascular leakage, lung cGMP levels, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Prophylactic treatment with apelin improved alveolarization and angiogenesis, increased lung cGMP levels, and reduced pulmonary fibrin deposition, inflammation, septum thickness, arteriolar wall thickness, and right ventricular hypertrophy. These beneficial effects were completely absent in the presence of L-NAME. In the injury-recovery model apelin also improved alveolarization and angiogenesis, reduced arteriolar wall thickness, and attenuated right ventricular hypertrophy.. Apelin reduces pulmonary inflammation, fibrin deposition, and right ventricular hypertrophy, and partially restores alveolarization in rat pups with neonatal hyperoxic lung injury via a nitric oxide synthase-dependent mechanism.

    Topics: Animals; Animals, Newborn; Apelin; Apelin Receptors; Carrier Proteins; Cyclic GMP; Heart Injuries; Hyperoxia; In Situ Hybridization; Inflammation; Intercellular Signaling Peptides and Proteins; Lung; Lung Injury; Myocardium; NG-Nitroarginine Methyl Ester; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Reverse Transcriptase Polymerase Chain Reaction

2010
Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen.
    Journal of applied physiology (Bethesda, Md. : 1985), 2009, Volume: 106, Issue:4

    Oxygen is a potent cerebral vasoconstrictor, but excessive exposure to hyperbaric oxygen (HBO(2)) can reverse this vasoconstriction by stimulating brain nitric oxide (NO) production, which increases cerebral blood flow (CBF)-a predictor of O(2) convulsions. We tested the hypothesis that phosphodiesterase (PDE)-5 blockers, specifically sildenafil and tadalafil, increase CBF in HBO(2) and accelerate seizure development. To estimate changes in cerebrovascular responses to hyperoxia, CBF was measured by hydrogen clearance in anesthetized rats, either control animals or those pretreated with one of these blockers, with the NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME), with the NO donor S-nitroso-N-acetylpenicillamine (SNAP), or with a blocker combined with l-NAME. Animals were exposed to 30% O(2) at 1 atm absolute (ATA) ("air") or to 100% O(2) at 4 or 6 ATA. EEG spikes indicated central nervous system CNS O(2) toxicity. The effects of PDE-5 blockade varied as a positive function of ambient Po(2). In air, CBF did not increase significantly, except after pretreatment with SNAP. However, at 6 ATA O(2), mean values for CBF increased and values for seizure latency decreased, both significantly; pretreatment with l-NAME abolished these effects. Conscious rats treated with sildenafil before HBO(2) were also more susceptible to CNS O(2) toxicity, as demonstrated by significantly shortened convulsive latency. Decreases in regional CBF reflect net vasoconstriction in the brain regions studied, since mean arterial pressures remained constant or increased throughout. Thus PDE-5 blockers oppose the protective vasoconstriction that is the initial response to hyperbaric hyperoxia, decreasing the safety of HBO(2) by hastening onset of CNS O(2) toxicity.

    Topics: Anesthesia; Animals; Blood Gas Analysis; Blood Pressure; Cerebrovascular Circulation; Cyclic GMP; Guanylate Cyclase; Hyperbaric Oxygenation; Hyperoxia; Infusions, Intravenous; Male; Nitric Oxide Synthase Type I; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Rats; Rats, Sprague-Dawley; Seizures; Signal Transduction; Vasoconstriction

2009
Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma.
    American journal of physiology. Lung cellular and molecular physiology, 2008, Volume: 295, Issue:2

    Prolonged hyperoxic exposure contributes to neonatal lung injury, and airway hyperreactivity is characterized by enhanced contraction and impaired relaxation of airway smooth muscle. Our previous data demonstrate that hyperoxia in rat pups upregulates expression of brain-derived neurotrophic factor (BDNF) mRNA and protein, disrupts NO-cGMP signaling, and impairs cAMP production in airway smooth muscle. We hypothesized that BDNF-tyrosine kinase B (TrkB) signaling plays a functional role in airway hyperreactivity via upregulation of cholinergic mechanisms in hyperoxia-exposed lungs. Five-day-old rat pups were exposed to >or=95% oxygen or room air for 7 days and administered daily tyrosine kinase inhibitor K-252a (50 microg x kg(-1) x day(-1) i.p.) to block BDNF-TrkB signaling or vehicle. Lungs were removed for HPLC measurement of ACh or for in vitro force measurement of lung parenchymal strips. ACh content doubled in hyperoxic compared with room air-exposed lungs. K-252a treatment of hyperoxic pups restored ACh content to room air levels. Hyperoxia increased contraction and impaired relaxation of lung strips in response to incremental electrical field stimulation. K-252a administration to hyperoxic pups reversed this increase in contraction and decrease in relaxation. K-252a or TrkB-Fc was used to block the effect of exogenous BDNF in vitro. Both K-252a and TrkB-Fc blocked the effects of exogenous BDNF. Hyperoxia decreased cAMP and cGMP levels in lung strips, and blockade of BDNF-TrkB signaling restored cAMP but not cGMP to control levels. Therefore, hyperoxia-induced increase in activity of BDNF-TrkB receptor signaling appears to play a critical role in enhancing cholinergically mediated contractile responses of lung parenchyma.

    Topics: Acetylcholine; Animals; Animals, Newborn; Brain-Derived Neurotrophic Factor; Carbazoles; Cyclic AMP; Cyclic GMP; Enzyme Inhibitors; Hyperoxia; Indole Alkaloids; Lung; Lung Injury; Muscle Relaxation; Muscle, Smooth; Rats; Rats, Sprague-Dawley; Receptor, trkB; Signal Transduction

2008
Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells.
    Circulation research, 2008, Feb-01, Volume: 102, Issue:2

    In the pulmonary vasculature, cGMP concentrations are regulated in part by a cGMP-dependent phosphodiesterase (PDE), PDE5. Infants with persistent pulmonary hypertension of the newborn (PPHN) are often mechanically ventilated with high oxygen concentrations. The effects of hyperoxia on the developing pulmonary vasculature and PDE5 are largely unknown. Here, we demonstrate that exposure of fetal pulmonary artery smooth muscle cells (FPASMCs) to high levels of oxygen for 24 hours leads to decreased responsiveness to exogenous NO, as determined by a decreased intracellular cGMP response, increased PDE5 mRNA and protein expression, as well as increased PDE5 cGMP hydrolytic activity. We demonstrate that inhibition of PDE5 activity with sildenafil partially rescues cGMP responsiveness to exogenous NO. In FPASMCs, hyperoxia leads to increased oxidative stress without increasing cell death. Treatment of normoxic FPASMCs with H2O2 is sufficient to induce PDE5 expression and activity, suggesting that reactive oxygen species mediate the effects of hyperoxia in FPASMCs. In support of this mechanism, a chemical antioxidant, N-acetyl-cysteine, is sufficient to block the hyperoxia-mediated increase in PDE5 expression and activity and rescue cGMP responsiveness to exogenous NO. Finally, ventilation of healthy neonatal sheep with 100% O2 for 24 hours leads to increased PDE5 protein expression in the resistance pulmonary arteries and increased PDE5 activity in whole lung extracts. These data suggest that PDE5 expression and activity play a critical role in modulating neonatal pulmonary vascular tone in response to common clinical treatments for PPHN, such as oxygen and inhaled NO.

    Topics: Animals; Animals, Newborn; Cells, Cultured; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Gene Expression Regulation, Enzymologic; Hyperoxia; Hypertension, Pulmonary; Myocytes, Smooth Muscle; Nitric Oxide; Pulmonary Artery; RNA, Messenger; Sheep, Domestic

2008
Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs.
    Pulmonary pharmacology & therapeutics, 2008, Volume: 21, Issue:2

    Since the generation of nitric oxide (NO) is an essential step in the trigger phase of ischemic preconditioning, short-term inhalation of NO before ischemia should ameliorate ischemia/reperfusion (I/R) injury of the lung. We tested this hypothesis in high oxygen (>99%) ventilated rats in order to additionally evaluate compatibility of NO and exposure to hyperoxia. Male adult Sprague-Dawley rats inhaled NO (15 ppm, 10 min) before the left lung hilum was clamped for 1 h, and the reperfusion phase was observed for 4 h (NO group). Animals in the I/R group underwent the same treatment, but without NO inhalation. A third group without I/R served as time-matched controls. Animals in the I/R group showed severe I/R injury in terms of arterial pO2 (apO2), which was reduced to 22% of surgical controls (SCs) at time point 30 min reperfusion, and increased endothelial permeability (Evans blue procedure). The pretreatment with NO attenuated these effects. The pO2 after 4 h reperfusion was still 3.0-fold higher in the NO group compared to I/R. In contrast, the I/R- and hyperoxia-induced invasion of leukocytes, as determined by measuring myeloperoxidase (MPO) activity, was not affected by NO. These data were correlated with the activity of major cellular signaling pathways by measuring the phosphorylation at activating and inhibitory sites of extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, protein kinase B (AKT), and glycogen synthase kinase 3beta (GSK-3beta), and by determination of cGMP in plasma and lung tissue. Inhalation of NO partly prevented the loss of activation by I/R and hyperoxic ventilation of ERK, JNK, and AKT, and it reduced the I/R-induced activation of GSK-3beta. The level of cGMP in plasma and lung tissue was increased in the NO group after 4 h reperfusion. In conclusion, application of inhaled NO in the preconditioning mode prevented I/R injury in the rat lung without interfering effects of hyperoxic ventilation. The effects of NO on cellular signaling pathways resemble mechanisms of ischemic preconditioning, but further studies have to evaluate the physiological relevance of these results.

    Topics: Administration, Inhalation; Animals; Capillary Permeability; Cyclic GMP; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Glycogen Synthase Kinases; Hyperoxia; Ischemia; Ischemic Preconditioning; Lung; Male; MAP Kinase Signaling System; Nitric Oxide; Proto-Oncogene Proteins c-akt; Pulmonary Gas Exchange; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction

2008
Disruption of NO-cGMP signaling by neonatal hyperoxia impairs relaxation of lung parenchyma.
    American journal of physiology. Lung cellular and molecular physiology, 2007, Volume: 293, Issue:4

    Exposure of immature lungs to hyperoxia for prolonged periods contributes to neonatal lung injury and airway hyperreactivity. We studied the role of disrupted nitric oxide-guanosine 3',5'-cyclic monophosphate (NO-cGMP) signaling in impairing the relaxant responses of lung tissue from hyperoxia-exposed rat pups. Pups were exposed to >/=95% O(2) or room air for 7 days starting from days 1, 5, or 14. The animals were killed, lungs were removed, and 1-mm-thick lung parenchymal strips were prepared. Lung parenchymal strips of room air or hyperoxic pups were preconstricted using bethanechol and then graded electrical field stimulation (EFS) was applied to induce relaxation. EFS-induced relaxation of lung parenchymal strips was greater at 7 and 12 days than at 21 days in room air-exposed rat pups. Hyperoxic exposure significantly reduced relaxation at 7 and 12 days but not 21 days compared with room air exposure. NO synthase blockade with N(omega)-nitro-l-arginine methyl ester diminished relaxant responses in room air but not in hyperoxic pups at 12 days. After incubation with supplemental l-arginine, the relaxation response of hyperoxic strips was restored. cGMP, a key mediator of the NO signaling pathway, also decreased in strips from hyperoxic vs. room air pups and cGMP levels were restored after incubation with supplemental l-arginine. In addition, arginase activity was significantly increased in hyperoxic lung parenchymal strips compared with room air lung parenchymal strips. These data demonstrate disruption of NO-cGMP signaling in neonatal rat pups exposed to hyperoxia and show that bioavailability of the substrate l-arginine is implicated in the predisposition of this model to airway hyperreactivity.

    Topics: Aging; Animals; Animals, Newborn; Arginase; Arginine; Cyclic GMP; Electric Stimulation; Enzyme Inhibitors; Hyperoxia; In Vitro Techniques; Lung; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Rats; Rats, Sprague-Dawley; Signal Transduction

2007
Hyperoxia impairs airway relaxation in immature rats via a cAMP-mediated mechanism.
    Journal of applied physiology (Bethesda, Md. : 1985), 2004, Volume: 96, Issue:5

    Hyperoxic exposure enhances airway reactivity in newborn animals, possibly due to altered relaxation. We sought to define the role of prostaglandinand nitric oxide-mediated mechanisms in impaired airway relaxation induced by hyperoxic stress. We exposed 7-day-old rat pups to either room air or hyperoxia (>95% O2) for 7 days to assess airway relaxation and cAMP and cGMP production after electrical field stimulation (EFS). EFS-induced relaxation of preconstricted trachea was diminished in hyperoxic vs. normoxic animals (P < 0.05). Indomethacin (a cyclooxygenase inhibitor) reduced EFS-induced airway relaxation in tracheae from normoxic (P < 0.05), but not hyperoxic, rat pups; however, in the presence of NG-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor) EFS-induced airway relaxation was similarly decreased in tracheae from both normoxic and hyperoxic animals. After EFS, the increase from baseline in the production of cAMP was significantly higher in tracheae from normoxic than hyperoxic rat pups, and this was accompanied by greater prostaglandin E2 release only in the normoxic group. cGMP production after EFS stimulation did not differ between normoxic and hyperoxic groups. We conclude that hyperoxia impairs airway relaxation in immature animals via a mechanism primarily involving the prostaglandin-cAMP signaling pathway with an impairment of prostaglandin E2 release and cAMP accumulation.

    Topics: Animals; Animals, Newborn; Cyclic AMP; Cyclic GMP; Dinoprostone; Hyperoxia; In Vitro Techniques; Muscle Relaxation; Muscle, Smooth; Rats; Rats, Sprague-Dawley; Trachea

2004
Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue.
    Nature, 2004, Jul-15, Volume: 430, Issue:6997

    Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5-12% oxygen, avoiding higher and lower oxygen levels. 3',5'-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments.

    Topics: Animals; Bacteria; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Cell Aggregation; Cyclic GMP; Feeding Behavior; Food; Gases; Guanylate Cyclase; Heme; Hyperoxia; Ion Channels; Mutation; Neurons, Afferent; Nitric Oxide; Oxygen; Protein Binding; Protein Structure, Tertiary; Social Behavior

2004
Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups.
    Pediatric research, 1999, Volume: 45, Issue:1

    Although hyperoxic exposure is an important contributor to the development of bronchopulmonary dysplasia and nitric oxide (NO) has been implicated in the pulmonary response to oxygen, the role of NO in mediating chronic neonatal lung injury is unclear. Therefore, rat pups were exposed to normoxia or hyperoxia (>95% O2) from d 21 to 29. After the rats were killed, their lungs were removed for analysis of nitric oxide synthase (NOS) expression, NO activity as measured by 3',5'-cyclic guanosine monophosphate (cGMP) assay, and lung pathology. Hyperoxia caused 5-fold and 2-fold increases in inducible (i) NOS and endothelial (e) NOS levels, respectively. NO activity was assessed by measuring cGMP levels after normoxic or hyperoxic exposure in the presence and absence of NOS blockade with either aminoguanidine (AG) or Nomega-nitro-L-arginine (L-NNA). cGMP levels were elevated in hyperoxic versus normoxic rats (287+/-15 versus 106+/-9 pmol/mg protein, respectively, p < 0.001), and this increase in cGMP was attenuated after NOS blockade with either AG or L-NNA. Hyperoxic exposure significantly increased lung/body weight ratios and induced histologic changes of interstitial and alveolar edema; however, these hyperoxia-induced histologic changes were not altered by NOS blockade with AG or L-NNA. We conclude that hyperoxic exposure of rat pups up-regulated both iNOS and eNOS and increased NO activity as measured by cGMP levels derived from both iNOS and eNOS. Blockade of NOS reduced cGMP levels in the hyperoxic rat pups; however, it did not seem to reverse the pathologic consequences of hyperoxic exposure.

    Topics: Animals; Body Weight; Cyclic GMP; Hyperoxia; Lung; Microscopy, Electron; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Organ Size; Rats; Rats, Sprague-Dawley

1999
Increased nitric oxide synthesis and action preclude choroidal vasoconstriction to hyperoxia in newborn pigs.
    Circulation research, 1996, Volume: 79, Issue:3

    We tested the hypothesis that hyperoxia does not cause adequate constriction of choroidal vessels of the newborn (1 to 5 days old) pig, resulting in increased O2 delivery to the retina, possibly due to excess production and/or effects of vasodilators such as nitric oxide (NO). Hyperoxia (100% O2, 45 minutes) led to a decrease in retinal blood flow (RBF) of both newborn and juvenile (5 to 6 weeks old) pigs and also reduced choroidal blood flow (ChBF) in juvenile but not in newborn pigs; the absence of hyperoxia-induced ChBF response in the newborn was associated with a rise in choroidal O2 delivery. Ibuprofen (prostaglandin G/H synthase inhibitor) and 1,3-dimethyl-2-thiourea (a free radical scavenger) did not modify the choroidal hemodynamic responses to hyperoxia in newborn pigs. However, in newborn animals treated with the NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME), hyperoxia caused a decrease in blood flow and O2 delivery to the choroid. Consistent with these effects of L-NAME, hyperoxia induced an increase in choroidal cGMP in newborn pigs ventilated with 100% O2 and stimulated nitrite production in isolated choroids exposed to hyperoxia from newborn but not juvenile pigs; these effects were inhibited by NOS blockers. Also, both constitutive and inducible NOS activities were higher in choroidal tissues from newborn than from juvenile animals. In addition, the vasorelaxant effect of the NO donor sodium nitroprusside in vitro was also greater on choroids from newborn than from juvenile pigs. Finally, L-NAME prevented the hyperoxia-induced increase in peroxidation products in the choroid of newborns. It is concluded that hyperoxia does not lead to a decrease in blood flow and O2 delivery to the choroid of the newborn because of increased NO synthesis and effects; since the choroid is the main source of O2 supply to the retina, the present data contribute in providing an explanation for the increased susceptibility of the immature neonate to hyperoxia-induced retinopathy.

    Topics: Animals; Animals, Newborn; Biological Availability; Blood Pressure; Choroid; Cyclic GMP; Eye; Gases; Heart Rate; Hyperoxia; Intraocular Pressure; Nitric Oxide; Nitrites; Oxygen; Regional Blood Flow; Retinal Vessels; Swine; Vascular Resistance; Vasoconstriction

1996