cyclic-gmp has been researched along with Glucose-Intolerance* in 6 studies
1 trial(s) available for cyclic-gmp and Glucose-Intolerance
Article | Year |
---|---|
L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome.
The aim of this study was to evaluate the effects of a new L-arginine-enriched biscuit on endothelial function, insulin sensitivity/secretion and body composition.. The project was composed of two studies. The first study was an acute pilot postprandial study in 7 healthy subjects that evaluated bio-availability and vascular effects of L-arginine-enriched biscuits that contained 6.6 gL-arginine, 21.9 g carbohydrates, 3.6 g protein, 7.5 g fat and 4.3 g dietary fiber compared with placebo biscuits and 6.6 g powdered L-arginine. Subjects underwent the tests in random order, in at least 14-day intervals. The second study was a double-blind crossover study in 15 obese subjects with IGT and MS. These subjects consumed 6.6 g of L-arginine-enriched biscuits or placebo biscuits in a 1600 kcal diet. Each study period lasted 2 weeks with a 2-week washout in between. Endothelial function, glucose tolerance, insulin sensitivity and insulin secretion were evaluated at the end of each intervention period.. In the first study, the groups that received the L-arginine-enriched biscuits and the powdered L-arginine had similarly increased L-arginine, NOx and cGMP levels and post-ischemic blood flow (PI-BF). In both cases, these levels were significantly higher than those in the placebo biscuit recipient group. In the second study, the L-arginine-enriched biscuit recipient group displayed increased L-arginine, NOx, cGMP, PI-BF, and Matsuda index levels, whereas their circulating glucose, proinsulin/insulin ratio and fat mass were decreased compared with the placebo biscuit recipient group.. L-Arginine-enriched biscuits with low sugar and protein content enhance endothelial function and improve glucose metabolism, insulin sensitivity and insulin secretion in subjects with IGT and MS. Topics: Arginine; Body Composition; Body Weight; Cholesterol; Cross-Over Studies; Cyclic GMP; Double-Blind Method; Endothelium, Vascular; Female; Glucose Intolerance; Humans; Insulin; Insulin Secretion; Male; Metabolic Syndrome; Middle Aged; Nitric Oxide Synthase Type II; Obesity; Pilot Projects; Snacks; Triglycerides | 2013 |
5 other study(ies) available for cyclic-gmp and Glucose-Intolerance
Article | Year |
---|---|
Soluble guanylate cyclase chronic stimulation effects on cardiovascular reactivity in cafeteria diet-induced rat model of metabolic syndrome.
Metabolic syndrome is linked to an increased risk of cardiovascular complications by a mechanism involving mainly decreased nitric oxide (NO) bioavailability and impaired NO-soluble guanylate cyclase (sGC)- cyclic guanosine monophosphate (cGMP) signalling (NO-sGC-cGMP). To further develop this scientific point, this study aimed to investigate the effects of long-term treatment with BAY 41-2272 (a sGC stimulator) on cardiovascular reactivity of spontaneously hypertensive rats (SHR) as a model of metabolic syndrome. SHR were randomly divided into 3 groups: control group, cafeteria diet (CD)-fed group and CD-fed group treated daily with BAY 41-2272 (5 mg/kg) by gastric gavage for 12 weeks. In vivo measurements of body weight, abdominal circumference, blood pressure and glucose tolerance test were performed. At the end of the feeding period, ex vivo cumulative concentration-response curves were performed on isolated perfused heart (isoproterenol (0.1 nM - 1 μM)) and thoracic aorta (phenylephrine (1 nM-10 μM), acetylcholine (1 nM-10 μM), and sodium nitroprusside (SNP) (0.1 nM-0.1 μM)). We showed that chronic CD feeding induced abdominal obesity, hypertriglyceridemia, glucose intolerance and exacerbated arterial hypertension in SHR. Compared to control group, CD-fed group showed a decrease in β-adrenoceptor-induced cardiac inotropy, in coronary perfusion pressure and in aortic contraction to phenylephrine. While relaxing effects of acetylcholine and SNP were unchanged. BAY 41-2272 long-term treatment markedly prevented arterial hypertension development and glucose intolerance, enhanced the α Topics: Animals; Aorta, Thoracic; Cardiovascular Diseases; Coronary Circulation; Cyclic GMP; Disease Models, Animal; Enzyme Activation; Enzyme Activators; Glucose Intolerance; Hypertension; Hypertriglyceridemia; Isolated Heart Preparation; Male; Metabolic Syndrome; Nitric Oxide Synthase Type II; Obesity, Abdominal; Pyrazoles; Pyridines; Rats, Inbred SHR; Soluble Guanylyl Cyclase; Vasoconstriction; Vasodilation; Ventricular Function, Left; Ventricular Pressure | 2021 |
Effects of sildenafil treatment on thermogenesis and glucose homeostasis in diet-induced obese mice.
Stimulation of thermogenic pathways appears to be a promising approach to find new ways of tackling metabolic diseases like obesity and diabetes mellitus type 2. Thermogenic, weight reducing and insulin sensitizing effects of phosphodiesterase 5 (PDE 5) inhibitors have recently been postulated, suggesting that modulators of endogenous cGMP signaling have the therapeutic potential to treat metabolic disorders. However, most studies have been performed in vitro or in animals that were not glucose intolerant. We, thus, aimed to test the metabolic effects of the PDE 5 inhibitor sildenafil by treating diet-induced obese (DIO) mice orally for 8 days. Surprisingly, our results revealed no changes in body temperature, brown adipose tissue (BAT) thermogenesis and gene expression in BAT and inguinal white adipose tissue (iWAT), thus excluding a thermogenic or 'browning' effect of sildenafil in preexisting obesity. In contrast, sildenafil-treated DIO mice displayed changes in liver metabolism and glucose homeostasis resulting in impaired glucose tolerance (P < 0.05), demonstrating for the first time an unfavorable metabolic effect of increased hepatic cGMP signaling in obesity. As sildenafil is commonly prescribed to treat pulmonary arterial hypertension and erectile dysfunction in diabetic and/or obese patients, follow up studies are urgently required to re-evaluate the drug safety. Topics: Adipose Tissue; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Blood Glucose; Cyclic GMP; Erectile Dysfunction; Glucose Intolerance; Homeostasis; Hypertension; Liver; Male; Mice, Inbred C57BL; Mice, Obese; Obesity; Phosphodiesterase 5 Inhibitors; Signal Transduction; Sildenafil Citrate; Thermogenesis | 2018 |
Platelet hyperaggregability in high-fat fed rats: a role for intraplatelet reactive-oxygen species production.
Adiposity greatly increases the risk of atherothrombotic events, a pathological condition where a chronic state of oxidative stress is reported to play a major role. This study aimed to investigate the involvement of (NO)-soluble guanylyl cyclase (sGC) signaling pathway in the platelet dysfunction from high fat-fed (HFF) rats.. Male Wistar rats were fed for 10 weeks with standard chow (SCD) or high-fat diet (HFD). ADP (10 μM)- and thrombin (100 mU/ml)-induced washed platelet aggregation were evaluated. Measurement of intracellular levels of ROS levels was carried out using flow cytometry. Cyclic GMP levels were evaluated using ELISA kits.. High-fat fed rats exhibited significant increases in body weight, epididymal fat, fasting glucose levels and glucose intolerance compared with SCD group. Platelet aggregation induced by ADP (n = 8) and thrombin from HFD rats (n = 8) were significantly greater (P < 0.05) compared with SCD group. Platelet activation with ADP increased by 54% the intraplatelet ROS production in HFD group, as measured by flow cytometry (n = 6). N-acetylcysteine (NAC; 1 mM) and PEG-catalase (1000 U/ml) fully prevented the increased ROS production and platelet hyperaggregability in HFD group. The NO donors sodium nitroprusside (SNP; 10 μM) and SNAP (10 μM), as well as the NO-independent soluble guanylyl cyclase stimulator BAY 41-2272 (10 μM) inhibited the platelet aggregation in HFD group with lower efficacy (P < 0.05) compared with SCD group. The cGMP levels in response to these agents were also markedly lower in HFD group (P < 0.05). The prostacyclin analogue iloprost (1 μM) reduced platelet aggregation in HFD and SCD rats in a similar fashion (n = 4).. Metabolic abnormalities as consequence of HFD cause platelet hyperaggregability involving enhanced intraplatelet ROS production and decreased NO bioavailability that appear to be accompanied by potential defects in the prosthetic haem group of soluble guanylyl cyclase. Topics: Adenosine Diphosphate; Animals; Antioxidants; Blood Platelets; Cyclic GMP; Diet, High-Fat; Enzyme Activation; Enzyme Activators; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Glucose Intolerance; Glucose Tolerance Test; Guanylate Cyclase; Insulin Resistance; Male; Nitric Oxide; Nitric Oxide Donors; Oxidative Stress; Platelet Aggregation; Platelet Aggregation Inhibitors; Platelet Function Tests; Rats; Rats, Wistar; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Soluble Guanylyl Cyclase; Thrombin; Time Factors; Weight Gain | 2012 |
Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity.
Natriuretic peptides (NPs) have been characterized as vascular hormones that regulate vascular tone via guanylyl cyclase (GC), cyclic GMP (cGMP), and cGMP-dependent protein kinase (cGK). Recent clinical studies have shown that plasma NP levels were lower in subjects with the metabolic syndrome. The present study was conducted to elucidate the roles for NP/cGK cascades in energy metabolism.. We used three types of genetically engineered mice: brain NP (BNP) transgenic (BNP-Tg), cGK-Tg, and guanylyl cyclase-A (GCA) heterozygous knockout (GCA(+/-)) mice and analyzed the metabolic consequences of chronic activation of NP/cGK cascades in vivo. We also examined the effect of NPs in cultured myocytes.. BNP-Tg mice fed on high-fat diet were protected against diet-induced obesity and insulin resistance, and cGK-Tg mice had reduced body weight even on standard diet; surprisingly, giant mitochondria were densely packed in the skeletal muscle. Both mice showed an increase in muscle mitochondrial content and fat oxidation through upregulation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1alpha and PPARdelta. The functional NP receptors, GCA and guanylyl cyclase-B, were downregulated by feeding a high-fat diet, while GCA(+/-) mice showed increases in body weight and glucose intolerance when fed a high-fat diet. NPs directly increased the expression of PGC-1alpha and PPARdelta and mitochondrial content in cultured myocytes.. The findings together suggest that NP/cGK cascades can promote muscle mitochondrial biogenesis and fat oxidation, as to prevent obesity and glucose intolerance. The vascular hormone, NP, would contribute to coordinated regulation of oxygen supply and consumption. Topics: Animals; Blood Glucose; Cells, Cultured; Cyclic GMP; Dietary Fats; Down-Regulation; Genetic Engineering; Glucose Intolerance; Insulin Resistance; Lipid Peroxidation; Mice; Mice, Knockout; Mitochondria; Molecular Sequence Data; Muscle Cells; Muscle, Skeletal; Natriuretic Peptide, Brain; Natriuretic Peptides; Obesity; Oxygen Consumption; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR delta; PPAR gamma; Protein Kinases; Receptors, Atrial Natriuretic Factor; Trans-Activators; Transcription Factors; Up-Regulation | 2009 |
Increased plasma endothelin-1 and intraplatelet cyclic guanosine monophosphate in men with disturbed glucose metabolism.
Plasma endothelin-1, the nitric oxide (NO) mediator intraplatelet cyclic guanosine monophosphate (cGMP), the prostacyclin mediator cyclic adenosine monophosphate (cAMP) and the macrophage derived inflammatory mediator plasma neopterin were measured in men with Type 2 diabetes mellitus (n=91), impaired glucose tolerance (IGT; n=51), previously abnormal glucose tolerance (PAGT; n=20), and 34 healthy control men. Plasma endothelin-1was higher in men with Type 2 diabetes mellitus than in controls [4.1 (1.0-14.3) vs. 2.1 (0.2-8. 7) ng/l; P<0.001). Intraplatelet cGMP was higher in men with PAGT [0. 84 (0.57-2.76) pmol/10(9) platelets; P<0.05], IGT [0.85 (0.48-3.53); P<0.001] and Type 2 diabetes mellitus [0.90 (0.47-3.86); P<0.001] than in controls [0.70 (0.42-1.70]. No differences existed between groups concerning intraplatelet cAMP or plasma neopterin. Plasma endothelin-1 correlated with fasting plasma glucose (r=0.33; P<0.001) and HbA1(c) (r=0.29; P<0.001). In conclusion, elevated plasma endothelin-1 in Type 2 diabetes mellitus and its relationship to glucose and HbA1(c) suggest a putative role for endothelin-1 in diabetic endothelial cell damage. Increased cGMP indicating enhanced production/activity of NO suggests that factors other than reduced NO activity contribute to enhanced platelet aggregation in diabetes. Topics: Aged; Blood Glucose; Blood Platelets; Blood Pressure; Cholesterol; Cyclic GMP; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Endothelin-1; Glucose Intolerance; Glycated Hemoglobin; Humans; Leukocyte Count; Lipoproteins, HDL; Lipoproteins, LDL; Male; Middle Aged; Reference Values; Smoking; Vascular Diseases | 2000 |