cyclic-gmp has been researched along with Carbon-Monoxide-Poisoning* in 3 studies
3 other study(ies) available for cyclic-gmp and Carbon-Monoxide-Poisoning
Article | Year |
---|---|
Lymphocyte cytochrome c oxidase, cyclic GMP and cholinergic muscarinic receptors as peripheral indicators of carbon monoxide neurotoxicity after acute and repeated exposure in the rat.
Changes in cerebral cytochrome oxidase (COX) activity, nitric oxide (NO)-cyclic GMP (cGMP) pathway and cholinergic muscarinic receptors (MRs) have been reported in rodents acutely exposed to carbon monoxide (CO). These endpoints measurable in lymphocytes may serve as peripheral markers of CO neurotoxicity. The early and delayed effects of repeated and acute in vivo CO inhalation were investigated on COX activity, cGMP formation and MR binding in rat brain and lymphocytes to assess whether each endpoint was similarly affected both centrally and peripherally. Male Wistar rats either inhaled 500 ppm CO, 6 h/day, 5 days/week, 4 weeks (repeated exposure) or 2,400 ppm, 1 h (single exposure). Neither treatment altered brain or lymphocyte COX activity 1 and 7 days post-treatment. Also ineffective were repeated and acute CO treatments towards (3)H-quinuclidinyl benzilate (QNB) binding to MRs in cerebral cortex, hippocampus, striatum, cerebellum (respective controls, mean+/-S.D.: 171 +/- 45, 245 +/- 53, 263 +/- 14 and 77 +/- 7 fmol/mg protein) and lymphocytes (24 +/- 10 fmol/million cells) at the same time points. In lymphocytes control cGMP levels averaged 1.98 +/- 0.99 pmol/mg protein under basal conditions, and 3.94 +/- 0.55 pmol/mg protein after NO-stimulation. One day after chronic treatment cessation, the CO-treated group displayed about a 50% decrease in both basal and NO-stimulated cGMP values, which persisted up to 7 days after, compared to air-exposed rats. Acutely, CO caused a delayed enhancement (+140%) of NO-induced activation of soluble guanylate cyclase. The finding that the NO-cGMP pathway is a target for the delayed effects of CO in peripheral blood cells is in accordance with our data in brain [Hernández-Viadel, M., Castoldi, A.F., Coccini, T., Manzo, L., Erceg, S., Felipo, V., 2004. In vivo exposure to carbon monoxide causes delayed impairment of activation of soluble guanylate cyclase by nitric oxide in rat brain cortex and cerebellum. Journal of Neurochemistry 89, 1,157-1,165], and supports the use of this peripheral endpoint as a biomarker of CO central effects. Topics: Animals; Biomarkers; Brain; Carbon Monoxide; Carbon Monoxide Poisoning; Cyclic GMP; Dose-Response Relationship, Drug; Electron Transport Complex IV; Guanylate Cyclase; Inhalation Exposure; Lymphocytes; Male; Neurons; Rats; Rats, Wistar; Receptors, Muscarinic | 2006 |
Neuronal nitric oxide synthase and N-methyl-D-aspartate neurons in experimental carbon monoxide poisoning.
We measured changes in nitric oxide (NO) concentration in the cerebral cortex during experimental carbon monoxide (CO) poisoning and assessed the role for N-methyl-d-aspartate receptors (NMDARs), a glutamate receptor subtype, with progression of CO-mediated oxidative stress. Using microelectrodes, NO concentration was found to nearly double to 280 nM due to CO exposure, and elevations in cerebral blood flow, monitored as laser Doppler flow (LDF), were found to loosely correlate with NO concentration. Neuronal nitric oxide synthase (nNOS) activity was the cause of the NO elevation based on the effects of specific NOS inhibitors and observations in nNOS knockout mice. Activation of nNOS was inhibited by the NMDARs inhibitor, MK 801, and by the calcium channel blocker, nimodipine, thus demonstrating a link to excitatory amino acids. Cortical cyclic GMP concentration was increased due to CO poisoning and shown to be related to NO, versus CO, mediated guanylate cyclase activation. Elevations of NO were inhibited when rats were infused with superoxide dismutase and in rats depleted of platelets or neutrophils. When injected with MK 801 or 7-nitroindazole, a selective nNOS inhibitor, rats did not exhibit CO-mediated nitrotyrosine formation, myeloperoxidase (MPO) elevation (indicative of neutrophil sequestration), or impaired learning. Similarly, whereas CO-poisoned wild-type mice exhibited elevations in nitrotyrosine and myeloperoxidase, these changes did not occur in nNOS knockout mice. We conclude that CO exposure initiates perivascular processes including oxidative stress that triggers activation of NMDA neuronal nNOS, and these events are necessary for the progression of CO-mediated neuropathology. Topics: Animals; Brain Chemistry; Calcium Channel Blockers; Carbon Monoxide Poisoning; Cyclic GMP; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Indazoles; Laser-Doppler Flowmetry; Male; Maze Learning; Mice; Mice, Knockout; Microelectrodes; Neurons; Neurotoxicity Syndromes; Neutropenia; Neutrophils; NG-Nitroarginine Methyl Ester; Nimodipine; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Platelet Count; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Tyrosine | 2004 |
Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats.
Exposure to hyperbaric oxygen [3 atmospheres absolute (ATA) for 45 min] inhibited carbon monoxide (CO)-mediated lipid peroxidation in the brains of rats by preventing the conversion of xanthine dehydrogenase to oxidase, a conversion process known to be due to the action of leukocytes. The effect was the same whether treatment was given 24 hr before or up to 45 min after poisoning. Hyperbaric oxygen did not inhibit the initial interaction of leukocytes with brain microvasculature, based on measurements of myeloperoxidase (MPO) in microvessel segments, but persistent adherence, which is due to B2 integrins, did not occur. Exposing rats to 3 ATA pressure (0.21 ATA O2) after CO poisoning had no significant effects. A progressive reduction in brain microvessel MPO titers occurred with exposure to O2 at 1, 2, or 3 ATA after CO poisoning, but 1 ATA O2 treatment did not significantly inhibit xanthine oxidase formation or lipid peroxidation. In vitro studies with polymorphonuclear leukocytes (PMN) from rats exposed to hyperbaric oxygen corroborated the absence of PMN B2 integrin function, but when these cells were stimulated they exhibited normal B2 integrin expression on their surface and also normal elastase release and superoxide radical production. Adherence functions of PMN that do not require B2 integrins appeared to remain intact after exposure to hyperbaric oxygen, as peritoneal neutrophilia in response to a glycogen challenge was not inhibited. B2 integrin function could be restored by incubating cells with 8 bromo cGMP, and incubation with phorbol ester stimulated the adherence function of both control and hyperbaric oxygen-exposed PMN. These results provide a clear mechanism for the inhibition of CO-mediated brain lipid peroxidation by hyperbaric oxygen and indicate that hyperoxia causes a discrete disturbance of PMN adherence function. Topics: Animals; Brain; Carbon Monoxide Poisoning; Cell Adhesion; Cyclic GMP; Integrins; Lipid Peroxidation; Male; Neutrophils; Oxidation-Reduction; Oxygen; Peroxidase; Rats; Rats, Wistar; Superoxides; Xanthine Dehydrogenase; Xanthine Oxidase | 1993 |