cyclic-gmp and Bronchopulmonary-Dysplasia

cyclic-gmp has been researched along with Bronchopulmonary-Dysplasia* in 4 studies

Trials

1 trial(s) available for cyclic-gmp and Bronchopulmonary-Dysplasia

ArticleYear
Inhaled nitric oxide increases urinary nitric oxide metabolites and cyclic guanosine monophosphate in premature infants: relationship to pulmonary outcome.
    American journal of perinatology, 2015, Volume: 32, Issue:3

    Inhaled nitric oxide (iNO) has been tested to prevent bronchopulmonary dysplasia (BPD) in premature infants, however, the role of cyclic guanosine monophosphate (cGMP) is not known. We hypothesized that levels of NO metabolites (NOx) and cGMP in urine, as a noninvasive source for biospecimen collection, would reflect the dose of iNO and relate to pulmonary outcome.. Studies were performed on 125 infants who required mechanical ventilation at 7 to 14 days and received 24 days of iNO at 20-2 ppm. A control group of 19 infants did not receive iNO.. In NO-treated infants there was a dose-dependent increase of both NOx and cGMP per creatinine (maximal 3.1- and 2-fold, respectively, at 10-20 ppm iNO) compared with off iNO. NOx and cGMP concentrations at both 2 ppm and off iNO were inversely related to severity of lung disease during the 1st month, and the NOx levels were lower in infants who died or developed BPD at term. NOx was higher in Caucasian compared with other infants at all iNO doses.. Urinary NOx and cGMP are biomarkers of endogenous NO production and lung uptake of iNO, and some levels reflect the severity of lung disease. These results support a role of the NO-cGMP pathway in lung development.

    Topics: Administration, Inhalation; Biomarkers; Bronchopulmonary Dysplasia; Creatinine; Cyclic GMP; Dose-Response Relationship, Drug; Female; Humans; Infant, Newborn; Infant, Premature; Infant, Premature, Diseases; Male; Nitric Oxide; Regression Analysis; Respiration, Artificial

2015

Other Studies

3 other study(ies) available for cyclic-gmp and Bronchopulmonary-Dysplasia

ArticleYear
Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease.
    Physiological reports, 2018, Volume: 6, Issue:20

    Neonatal pulmonary vascular disease (PVD) is increasingly recognized as a disease that complicates the cardiopulmonary adaptations after birth and predisposes to long-term cardiopulmonary disease. There is growing evidence that PVD is associated with disruptions in the nitric oxide (NO)-cGMP-phosphodiesterase 5 (PDE5) pathway. Examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of neonatal PVD. For this purpose, the role of the NO-cGMP-PDE5 pathway in regulation of pulmonary vascular function was investigated in vivo, both at rest and during exercise, and in isolated pulmonary small arteries in vitro, in a neonatal swine model with hypoxia-induced PVD. Endothelium-dependent vasodilatation was impaired in piglets with hypoxia-induced PVD both in vivo at rest and in vitro. Moreover, the responsiveness to the NO-donor SNP was reduced in hypoxia-exposed piglets in vivo, while the relaxation to SNP and 8-bromo-cyclicGMP in vitro were unaltered. Finally, PDE5 inhibition-induced pulmonary vasodilatation was impaired in hypoxia-exposed piglets both in vitro and in vivo at rest. During exercise, however, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in hypoxia-exposed as compared to normoxia-exposed piglets. In conclusion, the impaired endothelium-dependent vasodilatation in piglets with hypoxia-induced PVD was accompanied by reduced responsiveness to NO, potentially caused by altered sensitivity and/or activity of soluble guanylyl cyclase (sGC), resulting in an impaired cGMP production. Our findings in a newborn animal model for neonatal PVD suggests that sGC stimulators/activators may be a novel treatment strategy to alleviate neonatal PVD.

    Topics: Animals; Bronchopulmonary Dysplasia; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Endothelium, Vascular; Female; Guanylate Cyclase; Hypoxia; Lung; Male; Nitric Oxide; Phosphodiesterase 5 Inhibitors; Physical Conditioning, Animal; Swine; Vasodilation

2018
Aberrant cGMP signaling persists during recovery in mice with oxygen-induced pulmonary hypertension.
    PloS one, 2017, Volume: 12, Issue:8

    Bronchopulmonary dysplasia (BPD), a common complication of preterm birth, is associated with pulmonary hypertension (PH) in 25% of infants with moderate to severe BPD. Neonatal mice exposed to hyperoxia for 14d develop lung disease similar to BPD, with evidence of associated PH. The cyclic guanosine monophosphate (cGMP) signaling pathway has not been well studied in BPD-associated PH. In addition, there is little data about the natural history of hyperoxia-induced PH in mice or the utility of phosphodiesterase-5 (PDE5) inhibition in established disease. C57BL/6 mice were placed in room air or 75% O2 within 24h of birth for 14d, followed by recovery in room air for an additional 7 days (21d). Additional pups were treated with either vehicle or sildenafil for 7d during room air recovery. Mean alveolar area, pulmonary artery (PA) medial wall thickness (MWT), RVH, and vessel density were evaluated at 21d. PA protein from 21d animals was analyzed for soluble guanylate cyclase (sGC) activity, PDE5 activity, and cGMP levels. Neonatal hyperoxia exposure results in persistent alveolar simplification, RVH, decreased vessel density, increased MWT, and disrupted cGMP signaling despite a period of room air recovery. Delayed treatment with sildenafil during room air recovery is associated with improved RVH and decreased PA PDE5 activity, but does not have significant effects on alveolar simplification, PA remodeling, or vessel density. These data are consistent with clinical studies suggesting inconsistent effects of sildenafil treatment in infants with BPD-associated PH.

    Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Guanylate Cyclase; Hyperoxia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Mice; Mice, Inbred C57BL; Oxygen; Phosphodiesterase 5 Inhibitors; Pulmonary Alveoli; Pulmonary Artery; Signal Transduction; Sildenafil Citrate; Vascular Remodeling

2017
Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway.
    American journal of respiratory cell and molecular biology, 2013, Volume: 48, Issue:1

    Bronchopulmonary dysplasia (BPD) is a major cause of morbidity in premature infants receiving oxygen therapy. Currently, sildenafil is being examined clinically to improve pulmonary function in patients with BPD. Based on the pharmacological action of sildenafil, the elevation of cyclic guanosine 3',5'-monophosphate (cGMP) in lung tissue is considered to underlie its beneficial effects, but this mechanism is not understood at the molecular level. Here, we examined the possibility that sildenafil helps the pulmonary system adapt to hyperoxic stress. To induce BPD, fetal rats were exposed to LPS before delivery, and neonates were exposed to hyperoxia, followed by intraperitoneal injections of sildenafil. Alveolarization was impaired in rats exposed to hyperoxia, and alveolarization significantly recovered with sildenafil. An immunohistochemical examination revealed that sildenafil effectively increased vascular distribution in lung tissue. Furthermore, the oxygen sensor hypoxia-inducible factor (HIF)-1/2α and the angiogenic factor vascular endothelial growth factor (VEGF) were highly expressed in the lungs of sildenafil-treated rats. In human small-airway epithelial cells, HIF-1/2α and its downstream genes, including VEGF, were confirmed to be induced by sildenafil at both the protein and mRNA levels. Mechanistically, cGMP in airway cells accumulated after sildenafil treatment because of interfering phosphodiesterase Type 5, and subsequently cGMP activated HIF-mediated hypoxic signaling by stimulating the phosphoinositide 3-kinase (PI3K)-v-akt murine thymoma viral oncogene homolog 1 (AKT)-mammalian target of rapamycin (mTOR) pathway. This study provides a better understanding about the mode of action for sildenafil, and suggests that HIF can be a potential target for treating patients with BPD.

    Topics: Animals; Animals, Newborn; Basic Helix-Loop-Helix Transcription Factors; Bronchopulmonary Dysplasia; Cells, Cultured; Cyclic GMP; Disease Models, Animal; Female; Humans; Hypoxia-Inducible Factor 1; Infant, Newborn; Lung; Neovascularization, Physiologic; Phosphatidylinositol 3-Kinases; Piperazines; Pregnancy; Proto-Oncogene Proteins c-akt; Purines; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Sildenafil Citrate; Sulfones; TOR Serine-Threonine Kinases; Up-Regulation; Vascular Endothelial Growth Factor A

2013