cyanoginosin-lr has been researched along with Diabetes-Mellitus* in 2 studies
2 other study(ies) available for cyanoginosin-lr and Diabetes-Mellitus
Article | Year |
---|---|
Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR.
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases. Topics: Animals; Apoptosis; Bacterial Toxins; Cell Line; Diabetes Mellitus; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Gene Expression Profiling; Humans; Insulin; Islets of Langerhans; Marine Toxins; Microcystins; Rats; Water Pollutants, Chemical | 2017 |
Microcystin-LR induces dysfunction of insulin secretion in rat insulinoma (INS-1) cells: Implications for diabetes mellitus.
Microcystins (MCs) are the most frequent cyanobacterial toxins observed in freshwater systems. Accumulating evidence suggests that MCs pose a serious threat to public health. However, the contributions of the exposure of MCs to the occurrence of human diseases remain largely unknown. This study provides the evidence of the effects of MC-LR on pancreatic β-cell function through the exposure of rat insulinoma (INS-1) cells to 0, 10, 20, or 40μM MC-LR for 72h and explores the underlying molecular mechanisms. Our results demonstrate that exposure to MC-LR for 72h suppresses cell viability, disturbs glucose-stimulated insulin secretion (GSIS), and decreases the expression of insulin protein. Moreover, MC-LR disrupts the cell cycle distribution and increases cell apoptosis at 20 or 40μM for 72h, respectively, indicating that the β-cell mass would be decreased by MC-LR exposure. A transcriptomic analysis revealed several key genes (e.g., Pdx-1, Neurod1, and Abcc8) involved in insulin secretion are significantly differentially expressed in INS-1 cells in response to MC-LR exposure. In addition, several signal transduction pathways associated with diabetes (e.g., type 1 and 2 diabetes) were also identified compared with the control cells. We recommend that MC be considered as a new environmental factor that promotes diabetes development. The identified key genes or pathways may potentially contribute to the future therapies in the environmental contaminants induced β-cell damage. Topics: Animals; Cell Line, Tumor; Diabetes Mellitus; Insulin; Insulin Secretion; Insulin-Secreting Cells; Insulinoma; Marine Toxins; Microcystins; Pancreatic Neoplasms; Rats; Transcriptome | 2016 |