cyanine-dye-3 has been researched along with Carcinoma* in 2 studies
2 other study(ies) available for cyanine-dye-3 and Carcinoma
Article | Year |
---|---|
An immunohistochemical assay on human tissue using a human primary antibody.
Non human antibodies administered to human patients often generate anti-antibody responses, leading in extreme cases to anaphylactic shock. Completely human antibodies are therefore favored over their murine, chimeric and humanized counterparts. However, the accurate evaluation of human antibodies on human tissue samples cannot be achieved using indirect immunohistochemical methods because of endogenous immunoglobulins that are co-detected by the secondary antibodies. Direct detection is often used instead, but this lacks the signal amplification conferred by the secondary antibody and is therefore less sensitive. We developed a simple fluorescence-based indirect immunohistochemical method that allows human primary antibodies bound specifically to their target antigens in human tissue samples to be detected clearly and without interfering background staining. This approach involves a biotinylated human primary antibody (H10(Biotin)) and Cy3-conjugated streptavidin (Strep(Cy3)). We tested the protocol using a human carcinoembryonic antigen (CEA) specific IgG1 (H10). We identified an exposure time threshold that allowed the elimination of low Strep(Cy3) background staining, yet achieved sufficient signal amplification to make our approach four times more sensitive than comparable direct immunohistochemical procedures. The principle of this indirect immunohistochemical assay should be transferable to other species allowing the specific and sensitive detection of any primary antibody on homologous tissues. Topics: Animals; Antibodies, Monoclonal; Biotin; Biotinylation; Carbocyanines; Carcinoembryonic Antigen; Carcinoma; CHO Cells; Colonic Neoplasms; Cricetulus; Fluorescent Antibody Technique, Indirect; HEK293 Cells; Humans; Immunoglobulin G; Mice; Sensitivity and Specificity; Staining and Labeling; Streptavidin | 2014 |
Single-molecule imaging of EGFR signalling on the surface of living cells.
The early events in signal transduction from the epidermal growth factor (EGF) receptor (EGFR) are dimerization and autophosphorylation of the receptor, induced by binding of EGF. Here we observe these events in living cells by visualizing single molecules of fluorescent-dye-labelled EGF in the plasma membrane of A431 carcinoma cells. Single-molecule tracking reveals that the predominant mechanism of dimerization involves the formation of a cell-surface complex of one EGF molecule and an EGFR dimer, followed by the direct arrest of a second EGF molecule, indicating that the EGFR dimers were probably preformed before the binding of the second EGF molecule. Single-molecule fluorescence-resonance energy transfer shows that EGF-EGFR complexes indeed form dimers at the molecular level. Use of a monoclonal antibody specific to the phosphorylated (activated) EGFR reveals that the EGFR becomes phosphorylated after dimerization. Topics: Antibodies, Monoclonal; Calcium; Carbocyanines; Carcinoma; Cell Membrane; Dimerization; Energy Transfer; Epidermal Growth Factor; ErbB Receptors; Fluorescent Dyes; Humans; Intracellular Fluid; Microscopy, Fluorescence; Phosphorylation; Rhodamines; Signal Transduction; Tumor Cells, Cultured | 2000 |