cyanine-dye-1 and Fibrosarcoma

cyanine-dye-1 has been researched along with Fibrosarcoma* in 1 studies

Other Studies

1 other study(ies) available for cyanine-dye-1 and Fibrosarcoma

ArticleYear
Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors.
    Biomolecules, 2020, 12-09, Volume: 10, Issue:12

    This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.

    Topics: Acrylic Resins; Animals; Breast Neoplasms; Carbocyanines; Cell Line, Tumor; Female; Fibroblasts; Fibrosarcoma; Fluorescent Dyes; Folate Receptors, GPI-Anchored; Folic Acid; Glycoconjugates; Heterografts; Humans; Infrared Rays; KB Cells; Mice; Mice, Nude; Nanoparticles; Optical Imaging

2020