cyanidin-3-o-beta-glucopyranoside and Retinal-Diseases

cyanidin-3-o-beta-glucopyranoside has been researched along with Retinal-Diseases* in 2 studies

Other Studies

2 other study(ies) available for cyanidin-3-o-beta-glucopyranoside and Retinal-Diseases

ArticleYear
Cyanidin-3-glucoside attenuates 4-hydroxynonenal- and visible light-induced retinal damage in vitro and in vivo.
    Food & function, 2019, May-22, Volume: 10, Issue:5

    4-Hydroxynonenal (HNE) is a highly reactive end-product of lipid peroxidation reaction that leads to retinal pigment epithelial (RPE) cell damage. Cyanidin-3-glucoside (C3G), the most abundant anthocyanin in the edible parts of plants, is a nutritional supplement used for preventing retinal damage. However, the protective effect of C3G against HNE-induced RPE cell damage remains to be elucidated. The protective mechanisms of C3G on ARPE-19 cells after HNE exposure were investigated in this study. Results showed that compared with HNE-treated cells, the viability of ARPE-19 cells was significantly (P < 0.05) increased after 1 and 5 μM C3G treatment. C3G exhibited a significant (P < 0.05) inhibitory effect on the expression of senescence-associated β-galactosidase in ARPE-19 cells. VEGF levels in the C3G groups were significantly (P < 0.05) decreased relative to those of the HNE-treated group. C3G also regulated the release of two inflammatory mediators, namely monocyte chemoattractant protein 1 and interleukine-8, in ARPE-19 cells after HNE treatment. Furthermore, C3G attenuated retinal cell apoptosis in pigmented rabbits induced by visible light. Therefore, our data showed that C3G has efficient protective effects on HNE-induced apoptosis, angiogenesis, and dysregulated cytokine production in ARPE-19 cells.

    Topics: Aldehydes; Animals; Anthocyanins; Apoptosis; Chemokine CCL2; Glucosides; Humans; Interleukin-8; Light; Rabbits; Retinal Diseases; Retinal Pigment Epithelium; Vascular Endothelial Growth Factor A

2019
The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells.
    Journal of the science of food and agriculture, 2015, Mar-30, Volume: 95, Issue:5

    Studies have shown that anthocyanins (ACNs) in berries contribute to eye health. However, information on the relationship between the chemical structures and visual functions of ACNs is scarce. This study investigated the protection effects of ACNs with different structures against visible light-induced damage in human retinal pigment epithelial (RPE) cells.. Four ACNs with different aglycones, namely, pelargonidin-3-glucoside (Pg-3-glu), cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, and malvidin-3-glucoside (Mv-3-glu), were isolated from three berries (blueberry, blackberry and strawberry). Of these ACNs, Cy-3-glu exhibited the highest reactive oxygen species inhibitory capacity in RPE cells, with 40 µg mL(-1) Cy-3-glu showing a ROS clearance of 57.5% ± 4.2%. The expression of vascular endothelial growth factor levels were significantly (P < 0.05) down-regulated by Cy-3-glu and Mv-3-glu in a visible light-induced damage RPE cell model. Cy-3-glu and Pg-3-glu treatments significantly (P < 0.05) inhibited the increase in β-galactosidase during the RPE cell ageing caused by visible light exposure.. Our findings suggest that the biological properties of different ACNs significantly vary. Cy-3-glu, which contains an ortho hydroxyl group in its B ring, possibly exerts multiple protective effects (antioxidant, anti-angiogenic and anti-ageing) in RPE cells. Therefore, Cy-3-glu may prove useful as a prophylactic health food for the prevention of retinal diseases.

    Topics: Angiogenesis Inhibitors; Anthocyanins; Antioxidants; Blueberry Plants; Cell Line; Cellular Senescence; Dietary Supplements; Fragaria; Fruit; Glucosides; Humans; Light; Molecular Structure; Retinal Diseases; Retinal Pigment Epithelium; Rubus; Stereoisomerism

2015