cyanidin-3-o-beta-glucopyranoside and Obesity

cyanidin-3-o-beta-glucopyranoside has been researched along with Obesity* in 9 studies

Other Studies

9 other study(ies) available for cyanidin-3-o-beta-glucopyranoside and Obesity

ArticleYear
The effect of dietary supplementation with blueberry, cyanidin-3-O-β-glucoside, yoghurt and its peptides on gene expression associated with glucose metabolism in skeletal muscle obtained from a high-fat-high-carbohydrate diet induced obesity model.
    PloS one, 2022, Volume: 17, Issue:9

    Obesity is a leading global health problem contributing to various chronic diseases, including type II diabetes mellitus (T2DM). The aim of this study was to investigate whether blueberries, yoghurt, and their respective bioactive components, Cyanidin-3-O-β-glucoside (C3G) and peptides alone or in combinations, alter the expression of genes related to glucose metabolism in skeletal muscles from diet-induced obese mice. In extensor digitorum longus (EDL), yoghurt up-regulated the expression of activation of 5'adenosine monophosphate-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3 kinase (PI3K) and glucose transporter 4 (GLUT4), and down-regulated the expression of angiotensin II receptor type 1 (AGTR-1). The combination of blueberries and yoghurt down-regulated the mRNA expression of AGTR-1 and Forkhead box protein O1 (FoxO1) in the EDL. Whereas the combination of C3G and peptides down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression in the EDL. In the soleus, blueberries and yoghurt alone, and their combination down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression. In summary blueberries and yoghurt, regulated multiple genes associated with glucose metabolism in skeletal muscles, and therefore may play a role in the management and prevention of T2DM.

    Topics: Adenosine Monophosphate; AMP-Activated Protein Kinases; Animals; Anthocyanins; Blueberry Plants; Diabetes Mellitus, Type 2; Diet, High-Fat; Dietary Supplements; Forkhead Box Protein O1; Gene Expression; Glucose; Glucose Transport Proteins, Facilitative; Insulin Receptor Substrate Proteins; Mice; Mice, Obese; Muscle, Skeletal; Obesity; Phosphatidylinositol 3-Kinases; Phosphatidylinositols; Receptors, Angiotensin; RNA, Messenger; Yogurt

2022
Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications.
    Food research international (Ottawa, Ont.), 2019, Volume: 116

    Myrica faya Aiton (fire tree, faya) is an underused species with a diverse flavonoid composition (anthocyanins, flavonols, ellagitannins) which can promote positive effects on human health. M. faya has been reported to possess high antioxidant activities, but its potential in the prevention of type II diabetes has not been evaluated so far. In the present study, eight M. faya samples from different areas of Madeira and Azores archipelagos (Portugal) were collected to determine their phytochemical profile and then tested for their in vitro anti-diabetic and antioxidant activities. The analyzed extracts showed strong inhibitory activities towards α -glucosidase, aldose reductase and glycation of bovine serum albumin (BSA) and moderate effects towards α-amylase and lipase (by comparison with reference compounds). Cyanidin-3-O-glucoside and ellagitannins were the main bioactive agents involved in the anti-diabetic effects of M. faya. Such results may provide important scientific evidence for further utilization of M. faya as dietary or nutraceutical products for the prevention and/or control of hyperglycaemia-associated complications.

    Topics: Aldehyde Reductase; alpha-Amylases; alpha-Glucosidases; Anthocyanins; Anti-Obesity Agents; Antioxidants; Azores; Diabetes Complications; Diabetes Mellitus, Type 2; Enzyme Inhibitors; Flavonoids; Glucosides; Glycation End Products, Advanced; Humans; Hyperglycemia; Hypoglycemic Agents; Lipase; Myrica; Obesity; Phytochemicals; Plant Extracts; Polyphenols; Portugal; Serum Albumin, Bovine

2019
Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2018, Volume: 103

    Diabetic nephropathy (DN) is a common complication of diabetes and the major cause of chronic kidney disease. Cyanidin 3-glucoside (C3G) is the most widespread anthocyanin in nature. In the present study, we aimed to investigate the possible effects of C3G on DN in db/db mice. We found that body weights and high levels of fasting blood glucose, serum insulin, C-peptide, glycosylated hemoglobin A1c, and systolic blood pressure in diabetic mice were significantly reduced by C3G. C3G also reduced the ratio of kidney to body weight and the levels of blood urea nitrogen (BUN), serum creatinine, urinary albumin content and albumin/creatinine ratio (ACR), ameliorated the pathological changes of kidneys, reduced the surface area of Bowman's capsule, glomerular tuft, Bowman's space, and decreased renal expression of collagen IV, fibronectin, transforming growth factor β 1 (TGFβ1), matrix metalloprotein 9 (MMP9) and α-smooth muscle actin (α-SMA) in db/db mice. The Lee's index, perirenal white adipose tissue weight, and high levels of blood and renal triglyceride and cholesterol were decreased by C3G. Moreover, C3G reduced systemic levels and renal expression of tumor necrosis factor ɑ (TNFɑ), IL-1ɑ, and monocyte chemotactic protein-1 (MCP-1), indicating the inhibition of inflammation. Furthermore, C3G increased glutathione (GSH) level and decreased GSSG level in kidneys of diabetic mice. The renal mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) was increased by C3G in diabetic mice. Buthionine sulphoximine (BSO), an inhibitor of GSH synthesis, inhibited the effects of C3G on glucose metabolic dysfunction and DN. The data demonstrates that enhancement of GSH pool is involved in the renal-protective effects of C3G. Overall, C3G could be a promising therapeutic option for attenuation of diabetes and DN.

    Topics: Animals; Anthocyanins; Buthionine Sulfoximine; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibrosis; Glucose; Glucosides; Glutathione; Inflammation; Kidney; Lipid Metabolism; Male; Mice, Inbred C57BL; Obesity; Protective Agents

2018
Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function.
    Molecular nutrition & food research, 2017, Volume: 61, Issue:11

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue (BAT) formation and function increases energy expenditure and may protect against obesity. Cyanidin-3-glucoside (C3G) is an anthocyanin compound that occurs naturally in many fruits and vegetables. In this study, we investigated the effect and mechanism of C3G on the prevention of obesity.. Db/db mice received C3G dissolved in drinking water for 16 wk; drinking water served as the vehicle treatment. The total body weight, energy intake, metabolic rate, and physical activity were measured. The lipid droplets, gene expression and protein expression were evaluated by histochemical staining, real-time PCR, and western blots. We found that C3G increased energy expenditure, limited weight gain, maintained glucose homeostasis, reversed hepatic steatosis, improved cold tolerance, and enhanced BAT activity in obese db/db mice. C3G also induces brown-like adipocytes (beige) formation in subcutaneous white adipose tissue (sWAT) of db/db mice model. We also found that C3G potently regulates the transcription of uncoupling protein 1 (UCP1) both in BAT and sWAT through increasing mitochondrial number and function.. Our results suggest that C3G plays a role in regulating systemic energy balance, which may have potential therapeutic implications for the prevention and control of obesity.

    Topics: Adipogenesis; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Anthocyanins; Behavior, Animal; Dietary Supplements; Energy Intake; Energy Metabolism; Gene Expression Regulation; Glucosides; Liver; Locomotion; Male; Mice, Mutant Strains; Microscopy, Electron, Transmission; Mitochondria; Non-alcoholic Fatty Liver Disease; Obesity; Thermotolerance; Uncoupling Protein 1; Up-Regulation; Whole Body Imaging

2017
[Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].
    Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics, 2014, Volume: 16, Issue:5

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats.. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated.. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats.. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

    Topics: Animals; Anthocyanins; Blood Glucose; Diet, High-Fat; Glucosides; Insulin Resistance; Lipids; Male; Obesity; Rats; Rats, Sprague-Dawley; Weight Gain

2014
Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1.
    The Journal of nutritional biochemistry, 2012, Volume: 23, Issue:4

    Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines.

    Topics: Adipokines; Adipose Tissue, White; Animals; Anthocyanins; Chemokine CCL2; Diet, High-Fat; Dietary Fats; Fatty Liver; Forkhead Box Protein O1; Forkhead Transcription Factors; Glucosides; Hypoglycemic Agents; Insulin Resistance; Interleukin-6; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Signal Transduction; Triglycerides; Tumor Necrosis Factor-alpha

2012
Cyanidin-3-O-β-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity.
    Journal of the science of food and agriculture, 2011, Volume: 91, Issue:6

    Cyanidin-3-O-β-glucoside (Cy-3-g)-rich foods have been reported to inhibit the onset of obesity, but whether the pure anthocyanin supplementation affects obesity remains uncertain.. Cy-3-g supplementation significantly reduced obesity, accumulation of fat in visceral adipose and liver tissues, and plasma triglyceride levels. Furthermore, adenosine monophosphate (AMP)-activated protein kinase phosphorylation (pAMPK) in the skeletal muscle and visceral adipose were significantly increased by Cy-3-g consumption. This was followed by the activation of lipoprotein lipase (LPL) in plasma and skeletal muscle but the suppression of this enzyme in visceral adipose. LPL activation in skeletal muscle cells and its suppression in adipocytes by Cy-3-g were blocked by inhibition of pAMPK.. Our present data thus demonstrate that Cy-3-g improves obesity and triglyceride metabolism in KK-Ay mice. The underlying mechanism is found to be partly related to the activation of LPL in plasma and skeletal muscle, and inhibition of LPL in adipose tissue following the activation of pAMPK.

    Topics: AMP-Activated Protein Kinases; Animals; Anthocyanins; Cells, Cultured; Dietary Supplements; Female; Functional Food; Gene Expression Regulation, Enzymologic; Glucosides; Hypertriglyceridemia; Intra-Abdominal Fat; Lipoprotein Lipase; Liver; Mice; Muscle, Skeletal; Obesity; Phosphorylation; Protein Kinase Inhibitors; Protein Processing, Post-Translational; RNA, Messenger; Triglycerides

2011
Blood orange juice inhibits fat accumulation in mice.
    International journal of obesity (2005), 2010, Volume: 34, Issue:3

    To analyze the effect of the juice obtained from two varieties of sweet orange (Citrus sinensis L. Osbeck), Moro (a blood orange) and Navelina (a blond orange), on fat accumulation in mice fed a standard or a high-fat diet (HFD).. Obesity was induced in male C57/Bl6 mice by feeding a HFD. Moro and Navelina juices were provided instead of water. The effect of an anthocyanin-enriched extract from Moro oranges or purified cyanidin-3-glucoside (C3G) was also analyzed. Body weight and food intake were measured regularly over a 12-week period. The adipose pads were weighted and analyzed histologically; total RNA was also isolated for microarray analysis.. Dietary supplementation of Moro juice, but not Navelina juice significantly reduced body weight gain and fat accumulation regardless of the increased energy intake because of sugar content. Furthermore, mice drinking Moro juice were resistant to HFD-induced obesity with no alterations in food intake. Only the anthocyanin extract, but not the purified C3G, slightly affected fat accumulation. High-throughput gene expression analysis of fat tissues confirmed that Moro juice could entirely rescue the high fat-induced transcriptional reprogramming.. Moro juice anti-obesity effect on fat accumulation cannot be explained only by its anthocyanin content. Our findings suggest that multiple components present in the Moro orange juice might act synergistically to inhibit fat accumulation.

    Topics: Adipose Tissue; Animals; Anthocyanins; Beverages; Body Weight; Citrus sinensis; Dietary Fats; Glucosides; Male; Mice; Mice, Inbred C57BL; Obesity

2010
Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice.
    The Journal of nutrition, 2003, Volume: 133, Issue:7

    Anthocyanins, which are used as a food coloring, are widely distributed in human diets, suggesting that we ingest large amounts of anthocyanins from plant-based foods. Mice were fed control, cyanidin 3-glucoside-rich purple corn color (PCC), high fat (HF) or HF + PCC diet for 12 wk. Dietary PCC significantly suppressed the HF diet-induced increase in body weight gain, and white and brown adipose tissue weights. Feeding the HF diet markedly induced hypertrophy of the adipocytes in the epididymal white adipose tissue compared with the control group. In contrast, the induction did not occur in the HF + PCC group. The HF diet induced hyperglycemia, hyperinsulinemia and hyperleptinemia. These perturbations were completely normalized in rats fed HF + PCC. An increase in the tumor necrosis factor (TNF)-alpha mRNA level occurred in the HF group and was normalized by dietary PCC. These results suggest that dietary PCC may ameliorate HF diet-induced insulin resistance in mice. PCC suppressed the mRNA levels of enzymes involved in fatty acid and triacylglycerol synthesis and lowered the sterol regulatory element binding protein-1 mRNA level in white adipose tissue. These down-regulations may contribute to triacylglycerol accumulation in white adipose tissue. Our findings provide a biochemical and nutritional basis for the use of PCC or anthocyanins as a functional food factor that may have benefits for the prevention of obesity and diabetes.

    Topics: Adipose Tissue; Animals; Anthocyanins; Base Sequence; Body Weight; CCAAT-Enhancer-Binding Proteins; Diet; DNA Primers; DNA-Binding Proteins; Energy Intake; Glucosides; Hyperglycemia; Insulin Resistance; Lipids; Liver; Male; Mice; Mice, Inbred BALB C; Obesity; Organ Size; Sterol Regulatory Element Binding Protein 1; Transcription Factors

2003