cyanidin-3-o-beta-glucopyranoside has been researched along with Ischemia* in 3 studies
3 other study(ies) available for cyanidin-3-o-beta-glucopyranoside and Ischemia
Article | Year |
---|---|
Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway.
Ferroptosis, which is characterized by lipid peroxidation and iron accumulation, is closely associated with the pathogenesis of acute renal injury (AKI). Cyanidin-3-glucoside (C3G), a typical flavonoid that has anti-inflammatory and antioxidant effects on ischemia‒reperfusion (I/R) injury, can induce AMP-activated protein kinase (AMPK) activation. This study aimed to show that C3G exerts nephroprotective effects against I/R-AKI related ferroptosis by regulating the AMPK pathway.. Hypoxia/reoxygenation (H/R)-induced HK-2 cells and I/R-AKI mice were treated with C3G with or without inhibiting AMPK. The level of intracellular free iron, the expression of the ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4), and the levels of the lipid peroxidation markers 4-hydroxynonenal (4-HNE), lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were examined.. We observed the inhibitory effect of C3G on ferroptosis in vitro and in vivo, which was characterized by the reversion of excessive intracellular free iron accumulation, a decrease in 4-HNE, lipid ROS, MDA levels and ACSL4 expression, and an increase in GPX4 expression and glutathione (GSH) levels. Notably, the inhibition of AMPK by CC significantly abrogated the nephroprotective effect of C3G on I/R-AKI models in vivo and in vitro.. Our results provide new insight into the nephroprotective effect of C3G on acute I/R-AKI by inhibiting ferroptosis by activating the AMPK pathway. Topics: Acute Kidney Injury; AMP-Activated Protein Kinases; Animals; Ferroptosis; Iron; Ischemia; Lipids; Mice; Reactive Oxygen Species; Reperfusion Injury | 2023 |
The role of anthocyanins as an antioxidant under oxidative stress in rats.
Cyanidin 3-O-beta-D-glucoside (C3G) is included in anthocyanins, and expected to have a potency to scavenge active oxygen species in vivo. Rats were fed a diet containing C3G (2 g/kg diet) for 14 days, and then subjected to hepatic ischemia-reperfusion (I/R) as an oxidative stress model. I/R treatment elevated the liver thiobarbituric acid-reactive substance concentration and the serum activities of marker enzymes for liver injury, and lowered the liver reduced glutathione concentration. Feeding C3G significantly suppressed these changes caused by hepatic I/R. These results indicate that C3G functions as a potent antioxidant in vivo under oxidative stress. To clarify the mechanism of action of C3G, we investigated the absorption and metabolism of C3G in rats. C3G appeared in the plasma immediately after the oral administration of C3G. Protocatechuic acid, which seems to be produced by the degradation of cyanidin, was also present in the plasma. In the liver and kidneys, C3G was metabolized to methylated form. Topics: Animals; Anthocyanins; Antioxidants; Biotransformation; Glucosides; Intestinal Absorption; Ischemia; Kidney; Lipid Peroxidation; Liver; Male; Models, Biological; Oxidative Stress; Rats; Rats, Wistar; Reperfusion Injury; Thiobarbituric Acid Reactive Substances | 2000 |
Protective effects of dietary cyanidin 3-O-beta-D-glucoside on liver ischemia-reperfusion injury in rats.
We recently reported that feeding cyanidin 3-O-beta-d-glucoside (C3G), a typical anthocyanin pigment, lowered the serum thiobarbituric acid-reactive substance (TBARS) concentration and increased the oxidation resistance of the serum to lipid peroxidation in rats. These results suggest that C3G acts as a potent antioxidant in vivo when acute oxidative stress is encountered. In the present study, we evaluated whether feeding C3G suppresses oxidative injury to the liver caused by hepatic ischemia-reperfusion (I/R), which was used as a model for oxidative stress. Rats were fed a diet containing C3G (2 g/kg diet) for 14 days and then subjected to hepatic I/R. I/R treatment elevated the liver TBARS concentration and the serum activities of marker enzymes (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase) for liver injury and lowered the liver reduced glutathione concentration. Feeding C3G significantly suppressed these changes caused by hepatic I/R. Although the liver ascorbic acid concentration was also lowered by hepatic I/R, feeding C3G restored this concentration more quickly compared to the control rats. These results indicate that orally administered C3G suppresses I/R-induced oxidative damage and suggest that C3G functions as a potent antioxidant in vivo under oxidative stress. Topics: Animals; Anthocyanins; Antioxidants; Glucosides; Ischemia; Lipid Peroxidation; Liver; Male; Rats; Rats, Wistar; Reperfusion Injury | 1999 |