cx-5461 and Multiple-Myeloma

cx-5461 has been researched along with Multiple-Myeloma* in 1 studies

Other Studies

1 other study(ies) available for cx-5461 and Multiple-Myeloma

ArticleYear
RNA Polymerase I Inhibition with CX-5461 as a Novel Therapeutic Strategy to Target MYC in Multiple Myeloma.
    British journal of haematology, 2017, Volume: 177, Issue:1

    Dysregulation of MYC is frequently implicated in both early and late myeloma progression events, yet its therapeutic targeting has remained a challenge. Among key MYC downstream targets is ribosomal biogenesis, enabling increases in protein translational capacity necessary to support the growth and self-renewal programmes of malignant cells. We therefore explored the selective targeting of ribosomal biogenesis with the small molecule RNA polymerase (pol) I inhibitor CX-5461 in myeloma. CX-5461 induced significant growth inhibition in wild-type (WT) and mutant TP53 myeloma cell lines and primary samples, in association with increases in downstream markers of apoptosis. Moreover, Pol I inhibition overcame adhesion-mediated drug resistance and resistance to conventional and novel agents. To probe the TP53-independent mechanisms of CX-5461, gene expression profiling was performed on isogenic TP53 WT and knockout cell lines and revealed reduction of MYC downstream targets. Mechanistic studies confirmed that CX-5461 rapidly suppressed both MYC protein and MYC mRNA levels. The latter was associated with an increased binding of the RNA-induced silencing complex (RISC) subunits TARBP2 and AGO2, the ribosomal protein RPL5, and MYC mRNA, resulting in increased MYC transcript degradation. Collectively, these studies provide a rationale for the clinical translation of CX-5461 as a novel therapeutic approach to target MYC in myeloma.

    Topics: Animals; Antineoplastic Agents; Benzothiazoles; Cell Line, Tumor; Disease Models, Animal; Drug Resistance, Neoplasm; Gene Expression; Gene Expression Profiling; Humans; Mice; Molecular Targeted Therapy; Multiple Myeloma; Mutation; Naphthyridines; Proto-Oncogene Proteins c-myc; RNA Polymerase I; Tumor Burden; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays

2017