cx-4945 has been researched along with Cholangiocarcinoma* in 5 studies
1 trial(s) available for cx-4945 and Cholangiocarcinoma
Article | Year |
---|---|
Silmitasertib plus gemcitabine and cisplatin first-line therapy in locally advanced/metastatic cholangiocarcinoma: A Phase 1b/2 study.
This study aimed to investigate safety and efficacy of silmitasertib, an oral small molecule casein kinase 2 inhibitor, plus gemcitabine and cisplatin (G+C) versus G+C in locally advanced/metastatic cholangiocarcinoma.. This work is a Phase 1b/2 study (S4-13-001). In Phase 2, patients received silmitasertib 1000 mg twice daily for 10 days with G+C on Days 1 and 8 of a 21-day cycle. Primary efficacy endpoint was progression-free survival (PFS) in the modified intent-to-treat population (defined as patients who completed at least one cycle of silmitasertib without dose interruption/reduction) from both phases (silmitasertib/G+C n = 55, G+C n = 29). The response was assessed by Response Evaluation Criteria in Solid Tumors v1.1. The median PFS was 11.2 months (95% confidence interval [CI], 7.6, 14.7) versus 5.8 months (95% CI, 3.1, not evaluable [NE]) ( p = 0.0496); 10-month PFS was 56.1% (95% CI, 38.8%, 70.2%) versus 22.2% (95% CI, 1.8%, 56.7%); and median overall survival was 17.4 months (95% CI, 13.4, 25.7) versus 14.9 months (95% CI, 9.9, NE) with silmitasertib/G+C versus G+C. Overall response rate was 34.0% versus 30.8%; the disease control rate was 86.0% versus 88.5% with silmitasertib/G+C versus G+C. Almost all silmitasertib/G+C (99%) and G+C (93%) patients reported at least one treatment emergent adverse event (TEAE). The most common TEAEs (all grades) with silmitasertib/G+C versus G+C were diarrhea (70% versus 13%), nausea (59% vs. 30%), fatigue (47% vs. 47%), vomiting (39% vs. 7%), and anemia (39% vs. 30%). Twelve patients (10%) discontinued treatment because of TEAEs during the study.. Silmitasertib/G+C demonstrated promising preliminary evidence of efficacy for the first-line treatment of patients with locally advanced/metastatic cholangiocarcinoma. Topics: Antineoplastic Combined Chemotherapy Protocols; Bile Duct Neoplasms; Bile Ducts, Intrahepatic; Cholangiocarcinoma; Cisplatin; Deoxycytidine; Gemcitabine; Humans | 2023 |
4 other study(ies) available for cx-4945 and Cholangiocarcinoma
Article | Year |
---|---|
Anti-Growth, Anti-Angiogenic, and Pro-Apoptotic Effects by CX-4945, an Inhibitor of Casein Kinase 2, on HuCCT-1 Human Cholangiocarcinoma Cells via Control of Caspase-9/3, DR-4, STAT-3/STAT-5, Mcl-1, eIF-2α, and HIF-1α.
Overexpression of casein kinase 2 (CK2) has an oncogenic and pro-survival role in many cancers. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-angiogenic effects. Up to date, the anti-cancer effect and mechanism of CX-4945 on human cholangiocarcinoma (CCA) remain unclear. This study investigated whether CX-4945 inhibits growth and induces apoptosis of HuCCT-1 cells, a human CCA cell line. Of note, treatment with CX-4945 at 20 μM markedly reduced survival and induced apoptosis of HuCCT-1 cells, as evidenced by nuclear DNA fragmentation, PARP cleavage, activation of caspase-9/3, and up-regulation of DR-4. Although CX-4945 did not affect the phosphorylation and expression of CK2, it vastly inhibited the phosphorylation of CK2 substrates, supporting the drug's efficacy in inhibiting CK2 and its downstream pathway. Importantly, knockdown of CK2 that partially suppressed the phosphorylation of CK2 substrates resulted in a significant reduction of HuCCT-1 cell survival. In addition, CX-4945 reduced the phosphorylation and expression of STAT-3 and STAT-5 in HuCCT-1 cells, and pharmacological inhibition or respective knockdown of these proteins resulted in significant growth suppression of HuCCT-1 cells. CX-4945 also had abilities to decrease Mcl-1 expression while increasing eIF-2α phosphorylation in HuCCT-1 cells. Furthermore, there was a time-differential negative regulation of HIF-1α expression by CX-4945 in HuCCT-1 cells, and knockdown of HIF-1α caused a significant reduction of the cell survival. In summary, these results demonstrated that CX-4945 has anti-growth, anti-angiogenic, and pro-apoptotic effects on HuCCT-1 cells, which are mediated through control of CK2, caspase-9/3, DR-4, STAT-3/5, Mcl-1, eIF-2α, and HIF-1α. Topics: Bile Duct Neoplasms; Bile Ducts, Intrahepatic; Casein Kinase II; Caspase 9; Cell Line, Tumor; Cholangiocarcinoma; Eukaryotic Initiation Factor-2; Humans; Naphthyridines; Phenazines | 2022 |
The Casein Kinase 2 Inhibitor CX-4945 Promotes Cholangiocarcinoma Cell Death Through PLK1.
Casein Kinase 2 (CK2) is a prosurvival protein kinase involved in cell growth/proliferation through the regulation of the cell cycle and apoptosis. CK2 is over-expressed in various cancers, which correlates with a poor prognosis. This study examined the anti-cancer effects of silmitasertib (CX-4945), a CK2 inhibitor, on cholangiocarcinoma (CCA) cells.. The effects of CX-4945 on cell viability, cell cycle arrest, and apoptosis in the human cholangiocarcinoma cell lines TFK-1 and SSP-25 were evaluated. Alterations in posttranslational modifications and the levels of cell cycle regulators including p21, Polo-like kinase 1 (PLK1), andp53 were assessed by western blotting. Apoptotic responses were examined using Propidium iodine/Annexin V staining.. TFK-1 and SSP-25 cells exposed to CX-4945 showed morphologic changes and a more than 50% decrease in cell viability (p<0.05). Cell cycle arrest at the G2 phase was detected following an increase in phosphorylated PLK1 and p21. Furthermore, phospho-PLK1 induced the degradation of p53, which led to the dissociation of Bax from Bcl-xL. The cleavage of Caspase3 and PARP were also induced by CX-4945 treatment.. CX-4945 induces cell cycle arrest and cell death in cholangiocarcinoma cells via the regulation of PLK1 and p53. This may provide a novel therapeutic strategy for advanced cholangiocarcinoma. Topics: Bile Duct Neoplasms; Bile Ducts, Intrahepatic; Casein Kinase II; Cell Cycle Proteins; Cell Death; Cholangiocarcinoma; Humans; Naphthyridines; Phenazines; Polo-Like Kinase 1; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Tumor Suppressor Protein p53 | 2022 |
Sequence of CX-4945 and Cisplatin Administration Determines the Effectiveness of Drug Combination and Cellular Response in Cholangiocarcinoma Cells
The incidence of cholangiocarcinoma (CCA) is increasing worldwide and current single chemotherapeutic drug treatments are ineffective. CX-4945 and cisplatin are currently in clinical trial for CCA treatment.. We assessed the effects of the sequence of administration of CX-4945 and cisplatin applied in combination treatments on their efficacy in CCA cells in vitro. CCA cell viability was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Apoptosis was examined using flow cytometry. The percentage of cells positive for phosphorylated H2A histone family member X (γ-H2AX) were measured using both flow cytometry and immunofluorescence.. CCA cell viability was reduced to 50% after 24 h of treatments with CX-4945 and cisplatin as single agents. Interestingly, treatment with cisplatin 6 h prior to CX-4945 treatment induced significantly more DNA damage and apoptosis than CX-4945 treatment followed by cisplatin. Unexpectedly, CX-4945 treatment followed by cisplatin was less effective than single treatment in RMCCA-1 CCA cells. In addition, a 1:1 ratio of each drug was the most effective combination in these cells.. These data demonstrate that the combination of CX-4945 and cis platin acts additively when cisplatin is applied first, at least in part due to increased DNA damage and apoptosis. Furthermore, treatment with CX-4945 prior to cisplatin treatment reduces the efficacy of this drug combination in CCA cells. Topics: Antineoplastic Agents; Cell Proliferation; Cholangiocarcinoma; Cisplatin; Drug Combinations; Drug Synergism; Humans; Naphthyridines; Phenazines | 2021 |
TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures.
Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-β1-induced EMT; and (ii) LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay.. at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA. Topics: Apoptosis; Cell Line, Tumor; Cell Movement; Cell Survival; Cholangiocarcinoma; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Humans; Naphthyridines; Neoplastic Stem Cells; Phenazines; Primary Cell Culture; Pyrazoles; Quinolines; Signal Transduction; Transforming Growth Factor beta; Wound Healing | 2017 |