curcumin has been researched along with Thyroid-Carcinoma--Anaplastic* in 4 studies
1 review(s) available for curcumin and Thyroid-Carcinoma--Anaplastic
Article | Year |
---|---|
Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers.
Thyroid cancers developed from the tissues of the thyroid gland are classified into papillary (PTC), follicular (FTC), medullary (MTC), and anaplastic thyroid cancer (ATC). Although thyroid cancers have been generally known as mild forms of cancer, undifferentiated MTC and ATC have a more unfavorable prognosis than differentiated PTC and FTC because they are more aggressive and early metastatic. A variety of therapies such as surgery, radiotherapy, and chemotherapy have been currently used to treat thyroid cancer, but they still have limitations including drug resistance or unfavorable side effects. Phytochemicals are plant-derived chemicals having various physiological activities that are expected to be effective in cancer treatment. In this review, anticancer efficacy of phytochemicals, such as resveratrol, genistein, curcumin, and other substances in each type of thyroid cancer was introduced with their chemopreventive mechanisms. English articles related with thyroid cancer and anti-thyroid cancer of phytochemicals were searched from PubMed and Google Scholar. This article mainly focused on in vitro or animal studies on phytochemicals with anti-thyroid cancer activity. These various phytochemicals have been shown to induce apoptosis in all types of thyroid cancer cells, inhibit cell proliferation and invasion, and to be helpful in enhancing the effect of radioiodine therapy that is a typical therapy to thyroid cancer. These results suggest that thyroid cancer can be more effectively treated by the combinations of phytochemicals and the existing therapies or substances. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Cell Proliferation; Curcumin; Disease Models, Animal; Humans; Isoflavones; Phytochemicals; Resveratrol; Thyroid Carcinoma, Anaplastic; Thyroid Gland; Thyroid Neoplasms | 2019 |
3 other study(ies) available for curcumin and Thyroid-Carcinoma--Anaplastic
Article | Year |
---|---|
The curcumin analogue PAC has potent anti-anaplastic thyroid cancer effects.
Anaplastic thyroid carcinoma (ATC) is the rarest type of thyroid cancer, but is the common cause of death from these tumors. The aggressive behavior of ATC makes it resistant to the conventional therapeutic approaches. Thus, the present study was designed to evaluate the anti-ATC efficacy of the piperidone analogue of curcumin (PAC). We have shown that PAC induces apoptosis in thyroid cancer cells in a time-dependent fashion through the mitochondrial pathway. Immunoblotting analysis revealed that PAC suppressed the epithelial-to-mesenchymal transition (EMT) process in ATC cells by upregulating the epithelial marker E-cadherin and reducing the level of the mesenchymal markers N-cadherin, Snail, and Twist1. This anti-EMT effect was confirmed by showing PAC-dependent inhibition of the proliferation and migration abilities of ATC cells. Furthermore, PAC inhibited the AKT/mTOR pathway in ATC cells. Indeed, PAC downregulated mTOR and its downstream effectors p70S6K and 4E-BP1 more efficiently than the well-known mTOR inhibitor rapamycin. In addition to the promising in vitro anticancer efficacy, PAC significantly suppressed the growth of humanized thyroid tumor xenografts in mice. Together, these findings indicate that PAC could be considered as promising therapeutic agent for anaplastic thyroid carcinomas. Topics: Animals; Apoptosis; Cell Line, Tumor; Cell Proliferation; Curcumin; Humans; Mice; Piperidones; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; TOR Serine-Threonine Kinases | 2023 |
Inhibition of Cancer Stem-Like Phenotype by Curcumin and Deguelin in CAL-62 Anaplastic Thyroid Cancer Cells.
Anaplastic Thyroid Cancer (ATC) is one of the most lethal and aggressive human malignancies. Studies have shown that Cancer Stem-Cell (CSC) phenotype is mainly responsible for ATC aggressiveness. Cytostatic compounds are mostly ineffective because of multidrug resistance mechanisms driven by the CSC phenotype. Taxanes have limited efficacy. Recently, CSC inhibition using plant-derived, less toxic compounds, which have anti-cancer efficacy, has become a novel treatment modality. The aim of the study was to evaluate the anti-cancer activity of two natural compounds (curcumin and deguelin) on ATC cells and their CSC properties. In addition, the efficacies of these compounds were compared with that of docetaxel.. Besides control, five treatment groups were formed. ATC cells (CAL-62) were treated with curcumin, deguelin, docetaxel, and their combinations (curcumin+docetaxel, deguelin+docetaxel) at previously determined IC50 doses. Stemness was analyzed by quantitative estimation of sphere formation in matrigel, expression of several cell surface markers (CD133, CD90, Nanog, and OCT3/4) using flow cytometry, and quantification of the hypoxic status [Oxidative Stress Index (OSI) and Superoxide Dismutase (SOD) activity]. The anti-cancer efficacies of these compounds and their combinations were evaluated by determining the alterations in the cell cycle, apoptosis, and tumoral cell migration.. Both the natural compounds (particularly curcumin) significantly suppressed the spheroid formation and cellular motility in matrigel as well as suppressed the accumulation of cells in the G0/1 phase, in which the maximum CSC activity is observed. The compounds did not suppress the expression of CSC markers, but twothirds of the cells expressed CD90. Deguelin was found to be particularly effective in inducing apoptosis similar to docetaxel at IC50 concentrations. Curcumin reduced the OSI and deguelin enhanced the SOD activity, even in docetaxel pre-treated cells.. A large proportion of anaplastic tumors might consist of heterogeneous CSC population. Curcumin and deguelin have anti-cancer and several anti-stem cell activities against ATC cells. These natural compounds are capable of altering the aggressive behavior of ATC cells through the inhibition of the CSC phenotype. As a novel therapeutic target, CD90 should be investigated in other ATC cell lines and in vivo models. Topics: AC133 Antigen; Apoptosis; Cell Cycle; Cell Line, Tumor; Curcumin; Docetaxel; Drug Therapy, Combination; Humans; Nanog Homeobox Protein; Neoplastic Stem Cells; Octamer Transcription Factors; Oxidative Stress; Phenotype; Rotenone; Superoxide Dismutase; Thy-1 Antigens; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms | 2019 |
Effects of nutraceuticals on anaplastic thyroid cancer cells.
The anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a high mortality rate. Since nutraceuticals may exert beneficial effects on tumor biology, here, effects of four of these compounds [resveratrol, genistein, curcumin and epigallocatechin-3-gallate (EGCG)] on ATC cell lines were investigated.. Two ATC-derived cell lines were used: SW1736 and 8505C. Cell viability and in vitro aggressiveness was tested by MTT and soft agar assays. Apoptosis was investigated by Western Blot, using an anti-cleaved-PARP antibody. mRNA and miRNA levels were quantified by real-time PCR.. All tested nutraceuticals caused in both cell lines decrease of cell viability and increase of apoptosis. In contrast, only curcumin reduced in vitro aggressiveness in both SW1736 and 8505C cell lines, while genistein and EGCG determined a reduction of colony formation only in 8505C cells. Effects on genes related to the thyroid-differentiated phenotype were also tested: resveratrol and genistein administration determined the increment of almost all tested mRNAs in both cell lines. Instead curcumin and EGCG treatments had opposite effects in the two cell lines, causing the increment of almost all the mRNAs in 8505C cells and their reduction in SW1736. Finally, effects of nutraceuticals on levels of several miRNAs, known as important in thyroid cancer progression (hsa-miR-221, hsa-miR-222, hsa-miR-21, hsa-miR-146b, hsa-miR-204), were tested. Curcumin induced a strong and significant reduction of all miR analyzed, except for has-miR-204, in both cell lines.. Altogether, our results clearly indicate the anti-cancer proprieties of curcumin, suggesting the promising use of this nutraceutical in ATC treatment. Resveratrol, genistein and EGCG have heterogeneous effects on molecular features of ATC cells. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Catechin; Cell Differentiation; Cell Growth Processes; Cell Line, Tumor; Curcumin; Dietary Supplements; Genistein; Humans; MicroRNAs; Resveratrol; Stilbenes; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms | 2018 |