curcumin and Neurilemmoma

curcumin has been researched along with Neurilemmoma* in 3 studies

Other Studies

3 other study(ies) available for curcumin and Neurilemmoma

ArticleYear
Dasatinib enhances curcumin-induced cytotoxicity, apoptosis and protective autophagy in human schwannoma cells HEI-193: The role of Akt/mTOR/p70S6K signalling pathway.
    Acta pharmaceutica (Zagreb, Croatia), 2022, Sep-01, Volume: 72, Issue:3

    The present study was carried out in human schwannoma cells (HEI-193) to determine the combined anti-cancer effect of curcumin and dasatinib. Cells were treated with curcumin only, dasatinib only, or the combination of curcumin and dasatinib for 24 hours. Cellular toxicity, cell proliferation, and cell death were determined by LDH, MTT, and trypan blue dye assays, respectively. ELISA based kit was used to determine apoptotic cell death. Western blotting was used to determine the expression of apoptotic and autophagy-associated protein markers. Similarly, expression levels of Akt/mTOR/p70S6K signalling pathway-related proteins were studied using Western blotting. Cell death and apoptosis were significantly higher in HEI-193 cells treated with curcumin and dasatinib combination compared to individual controls. The combination of curcumin and dasatinib significantly enhances autophagy markers compared to individual controls. Furthermore, the combination of curcumin and dasatinib significantly activates Akt/mTOR/p70S6K signalling pathway compared to individual controls. In conclusion, our results suggest that the combination of curcumin and dasatinib significantly enhances cytotoxicity, apoptosis, and protective autophagy in HEI-193 cells through Akt/mTOR/p70S6K signalling pathway.

    Topics: Apoptosis; Autophagy; Cell Line, Tumor; Curcumin; Dasatinib; Humans; Neurilemmoma; Proto-Oncogene Proteins c-akt; Ribosomal Protein S6 Kinases, 70-kDa; TOR Serine-Threonine Kinases

2022
Preclinical validation of anti-nuclear factor-kappa B therapy to inhibit human vestibular schwannoma growth.
    Molecular oncology, 2015, Volume: 9, Issue:7

    Vestibular schwannomas (VSs), the most common tumors of the cerebellopontine angle, arise from Schwann cells lining the vestibular nerve. Pharmacotherapies against VS are almost non-existent. Although the therapeutic inhibition of inflammatory modulators has been established for other neoplasms, it has not been explored in VS. A bioinformatic network analysis of all genes reported to be differentially expressed in human VS revealed a pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) as a central molecule in VS pathobiology. Assessed at the transcriptional and translational level, canonical NF-κB complex was aberrantly activated in human VS and derived VS cultures in comparison to control nerves and Schwann cells, respectively. Cultured primary VS cells and VS-derived human cell line HEI-193 were treated with specific NF-κB siRNAs, experimental NF-κB inhibitor BAY11-7082 (BAY11) and clinically relevant NF-κB inhibitor curcumin. Healthy human control Schwann cells from the great auricular nerve were also treated with BAY11 and curcumin to assess toxicity. All three treatments significantly reduced proliferation in primary VS cultures and HEI-193 cells, with siRNA, 5 μM BAY11 and 50 μM curcumin reducing average proliferation (±standard error of mean) to 62.33% ± 10.59%, 14.3 ± 9.7%, and 23.0 ± 20.9% of control primary VS cells, respectively. These treatments also induced substantial cell death. Curcumin, unlike BAY11, also affected primary Schwann cells. This work highlights NF-κB as a key modulator in VS cell proliferation and survival and demonstrates therapeutic efficacy of directly targeting NF-κB in VS.

    Topics: Cell Line, Tumor; Cell Proliferation; Cell Survival; Curcumin; Gene Knockdown Techniques; Humans; Neurilemmoma; NF-kappa B; Vestibular Diseases

2015
Binding partners for curcumin in human schwannoma cells: biologic implications.
    Bioorganic & medicinal chemistry, 2013, Feb-15, Volume: 21, Issue:4

    Curcumin (diferuloylmethane) is a potent anti-inflammatory and anti-tumorigenic agent that has shown preclinical activity in diverse cancers. Curcumin up-regulates heat shock protein 70 (hsp70) mRNA in several different cancer cell lines. Hsp70 contributes to an escape from the apoptotic effects of curcumin by several different mechanisms including prevention of the release of apoptosis inducing factor from the mitochondria and inhibition of caspases 3 and 9. Previously we showed that the combination of curcumin plus a heat shock protein inhibitor was synergistic in its down-regulation of the proliferation of a human schwannoma cell line (HEI-193) harboring an NF2 mutation, possibly because curcumin up-regulated hsp70, which also binds merlin, the NF2 gene product. In order to determine if curcumin also interacts directly with hsp70 and to discover other binding partners of curcumin, we synthesized biotinylated curcumin (bio-curcumin) and treated HEI-193 schwannoma cells. Cell lysates were prepared and incubated with avidin-coated beads. Peptides pulled down from this reaction were sequenced and it was determined that biotinylated curcumin bound hsp70, hsp90, 3-phosphoglycerate dehydrogenase, and a β-actin variant. These binding partners may serve to further elucidate the underlying mechanisms of curcumin's actions.

    Topics: Binding Sites; Biotin; Cell Line, Tumor; Curcumin; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Humans; Molecular Docking Simulation; Neurilemmoma; Phosphoglycerate Dehydrogenase; Protein Binding; Protein Structure, Tertiary

2013