curcumin and Lymphoma--Mantle-Cell

curcumin has been researched along with Lymphoma--Mantle-Cell* in 3 studies

Other Studies

3 other study(ies) available for curcumin and Lymphoma--Mantle-Cell

ArticleYear
Novel Nanoscale Delivery Particles Encapsulated with Anticancer Drugs, All-trans Retinoic Acid or Curcumin, Enhance Apoptosis in Lymphoma Cells Predominantly Expressing CD20 Antigen.
    Anticancer research, 2015, Volume: 35, Issue:12

    Mantle cell lymphoma (MCL), a B-cell lymphoma, pursues a relatively aggressive course, is resistant to long-term remission, and is associated with a poor prognosis. There is a pressing need for innovative treatment approaches against MCL. One such approach is targeted delivery of cytotoxic drugs to MCL cells.. In the current investigation, we pursued a strategy to employ retinoid-based or curcumin-based nanoscale delivery particles, called nanodisks (NDs), for targeted drug delivery to MCL cells (Granta), and human follicular lymphoma (HF-1) cells. The cells were incubated with NDs made of CD20 single-chain variable antibody fragment (scFv)/apolipoprotein A-1 fusion protein, and loaded with either all-trans retinoic acid (ATRA) or curcumin, and cell apoptosis was measured using flow cytometry.. At 10 μM, curcumin-ND induced cell death more effectively than ATRA-ND. Combination of curcumin-ND and ATRA-ND significantly enhanced the biological activity of these drugs against lymphoma cells compared to individual treatments.

    Topics: Antigens, CD20; Antineoplastic Agents; Apoptosis; Curcumin; Drug Carriers; Humans; Lymphoma, Mantle-Cell; Nanoparticles; Tretinoin

2015
Curcumin nanodisk-induced apoptosis in mantle cell lymphoma.
    Leukemia & lymphoma, 2011, Volume: 52, Issue:8

    Mantle cell lymphoma (MCL) is a pre-germinal center neoplasm characterized by cyclin D1 overexpression resulting from t(11;14)(q13;q32). Since MCL is incurable with standard lymphoma therapies, new treatment approaches are needed that target specific biologic pathways. In the present study, we investigated a novel drug delivery nanovehicle enriched with the bioactive polyphenol, curcumin (curcumin nanodisks; curcumin-ND). Cells treated with curcumin-ND showed a dose-dependent increase in apoptosis. This was accompanied by enhanced generation of reactive oxygen species (ROS). The antioxidant, N-acetylcysteine, inhibited curcumin-ND induced apoptosis, suggesting that ROS generation plays a role in curcumin action on MCL cells. Curcumin-ND decreased cyclin D1, pAkt, pIκBα, and Bcl(2) protein. In addition, enhanced FoxO3a and p27 expression as well as caspase-9, -3, and poly(ADP-ribose) polymerase (PARP) cleavage were observed. Curcumin-ND treatment led to enhanced G(1) arrest in two cultured cell models of MCL.

    Topics: Acetylcysteine; Antineoplastic Agents; Apoptosis; Blotting, Western; Caspase 3; Caspase 9; Cell Cycle; Cell Line, Tumor; Curcumin; Cyclin D1; Dose-Response Relationship, Drug; Drug Delivery Systems; Flow Cytometry; G1 Phase; Humans; Lymphoma, Mantle-Cell; Nanostructures; Nanotechnology; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species

2011
Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma.
    Biochemical pharmacology, 2005, Sep-01, Volume: 70, Issue:5

    Human mantle cell lymphoma (MCL), an aggressive B cell non-Hodgkin's lymphoma, is characterized by the overexpression of cyclin D1 which plays an essential role in the survival and proliferation of MCL. Because of MCL's resistance to current chemotherapy, novel approaches are needed. Since MCL cells are known to overexpress NF-kappaB regulated gene products (including cyclin D1), we used curcumin, a pharmacologically safe agent, to target NF-kappaB in a variety of MCL cell lines. All four MCL cell lines examined had overexpression of cyclin D1, constitutive active NF-kappaB and IkappaB kinase and phosphorylated forms of IkappaBalpha and p65. This correlated with expression of TNF, IkappaBalpha, Bcl-2, Bcl-xl, COX-2 and IL-6, all regulated by NF-kappaB. On treatment of cells with curcumin, however, downregulated constitutive active NF-kappaB and inhibited the consitutively active IkappaBalpha kinase (IKK), and phosphorylation of IkappaBalpha and p65. Curcumin also inhibited constitutive activation of Akt, needed for IKK activation. Consequently, the expression of all NF-kappaB-regulated gene products, were downregulated by the polyphenol leading to the suppression of proliferation, cell cycle arrest at the G1/S phase of the cell cycle and induction of apoptosis as indicated by caspase activation, PARP cleavage, and annexin V staining. That NF-kappaB activation is directly linked to the proliferation of cells, is also indicated by the observation that peptide derived from the IKK/NEMO-binding domain and p65 suppressed the constitutive active NF-kappaB complex and inhibited the proliferation of MCL cells. Constitutive NF-kappaB activation was found to be due to TNF, as anti-TNF antibodies inhibited both NF-kappaB activation and proliferation of cells. Overall, our results indicate that curcumin inhibits the constitutive NF-kappaB and IKK leading to suppression of expression of NF-kappaB-regulated gene products that results in the suppression of proliferation, cell cycle arrest, and induction of apoptosis in MCL.

    Topics: Active Transport, Cell Nucleus; Apoptosis; Cell Line, Tumor; Cell Proliferation; Curcumin; G1 Phase; Humans; I-kappa B Proteins; Lymphoma, Mantle-Cell; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphorylation; S Phase; Tumor Necrosis Factor-alpha

2005