curcumin has been researched along with Hypertrophy* in 7 studies
7 other study(ies) available for curcumin and Hypertrophy
Article | Year |
---|---|
Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes.
The natural compound, curcumin (CUR), possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT) inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy. Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure-activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy. Topics: Animals; Cattle; Cells, Cultured; Curcuma; Curcumin; Diarylheptanoids; Heart Failure; Humans; Hypertrophy; Myocytes, Cardiac; p300-CBP Transcription Factors; Phytotherapy; Rabbits; Structure-Activity Relationship | 2018 |
Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.
Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype. Topics: Cell Proliferation; Cells, Cultured; Chondrocytes; Curcumin; Dose-Response Relationship, Drug; Hedgehog Proteins; Humans; Hypertrophy; Mesenchymal Stem Cells; Receptors, Notch; Signal Transduction; Structure-Activity Relationship | 2017 |
Nanocurcumin-pyrroloquinoline formulation prevents hypertrophy-induced pathological damage by relieving mitochondrial stress in cardiomyocytes under hypoxic conditions.
This study investigates the therapeutic effect of a nanocurcumin formulation (NCF) containing nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) on ameliorating hypoxia-induced stress in hypertrophied primary human ventricular cardiomyocytes (HVCM) under hypoxic conditions, as validated in a Sprague-Dawley rat model of chronic hypobaric hypoxia (cHH)-induced right ventricular hypertrophy (RVH). Based on our previous findings, here, we analyzed the improvement in the protective efficacy of NCF against mitochondrial damage. The electron transport chain Complexes' activities were analyzed as a chief operational center for mitochondrial homeostasis, along with key gene and protein markers for mitochondrial biogenesis, redox function, fatty acid oxidation, bio-energetic deficit and cell survival. NCF supplementation imparts cyto-protection from hypoxia-induced hypertrophy and damage in both in vitro and in vivo models while maintaining mitochondrial homeostasis better than NC and PQQ alone. This study proposes the use of NCF as a potential candidate molecule for imparting protection from high altitude-induced maladies in ascendants. Topics: Animals; Cell Survival; Cells, Cultured; Curcumin; Hypertrophy; Hypertrophy, Right Ventricular; Hypoxia; Male; Mitochondria; Myocytes, Cardiac; Pyrroles; Quinolines; Rats; Rats, Sprague-Dawley | 2017 |
Can curcumin modulate allergic rhinitis in rats?
This study aimed to explore the effects of curcumin on experimental allergic rhinitis in rats.. Twenty-eight male Wistar albino rats were randomly divided into four groups: a control group; a group in which allergic rhinitis was induced and no treatment given; a group in which allergic rhinitis was induced followed by treatment with azelastine hydrochloride on days 21-28; and a group in which allergic rhinitis was induced followed by treatment with curcumin on days 21-28. Allergy symptoms and histopathological features of the nasal mucosa were examined.. The sneezing and nasal congestion scores were higher in the azelastine and curcumin treatment groups than in the control group. Histopathological examination showed focal goblet cell metaplasia on the epithelial surface in the azelastine group. In the curcumin group, there was a decrease in goblet cell metaplasia in the epithelium, decreased inflammatory cell infiltration and vascular proliferation in the lamina propria.. Curcumin is an effective treatment for experimentally induced allergic rhinitis in rats. Topics: Administration, Intranasal; Animals; Anti-Allergic Agents; Anti-Inflammatory Agents, Non-Steroidal; Chondrocytes; Cilia; Curcumin; Eosinophils; Goblet Cells; Hyperemia; Hypertrophy; Male; Mast Cells; Metaplasia; Nasal Mucosa; Ovalbumin; Phthalazines; Random Allocation; Rats; Rats, Wistar; Rhinitis, Allergic; Sneezing | 2016 |
Curcumin attenuates cardiomyocyte hypertrophy induced by high glucose and insulin via the PPARγ/Akt/NO signaling pathway.
To investigate the potential effect of curcumin on cardiomyocyte hypertrophy and a possible mechanism involving the PPARγ/Akt/NO signaling pathway in diabetes.. The cardiomyocyte hypertrophy induced by high glucose (25.5mmol/L) and insulin (0.1μmol/L) (HGI) and the antihypertrophic effect of curcumin were evaluated in primary culture by measuring the cell surface area, protein content and atrial natriuretic factor (ANF) mRNA expression. The mRNA and protein expressions were assayed by reverse transcription PCR and Western blotting, whereas the NO concentration and endothelial NO synthase (eNOS) activity were determined using nitrate reduction and ELISA methods, respectively.. The cardiomyocyte hypertrophy induced by HGI was characterized by increasing ANF mRNA expression, total protein content, and cell surface area, with downregulated mRNA and protein expressions of both PPARγ and Akt, which paralleled the declining eNOS mRNA expression, eNOS content, and NO concentration. The effects of HGI were inhibited by curcumin (1, 3, 10μmol/L) in a concentration-dependent manner. GW9662 (10μmol/L), a selective PPARγ antagonist, could abolish the effects of curcumin. LY294002 (20μmol/L), an Akt blocker, and N(G)-nitro-l-arginine-methyl ester (100μmol/L), a NOS inhibitor, could also diminish the effects of curcumin.. The results suggested that curcumin supplementation can improve HGI-induced cardiomyocytes hypertrophy in vitro through the activation of PPARγ/Akt/NO signaling pathway. Topics: Anilides; Animals; Atrial Natriuretic Factor; Cells, Cultured; Chromones; Curcumin; Glucose; Hypertrophy; Insulin; Morpholines; Myocytes, Cardiac; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; PPAR gamma; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction | 2015 |
Nanocurcumin protects cardiomyoblasts H9c2 from hypoxia-induced hypertrophy and apoptosis by improving oxidative balance.
Hypoxia-induced cardiomyocyte hypertrophy is evident; however, the distinct molecular mechanism underlying the oxidative stress-mediated damages to cardiomyocytes remains unknown. Curcumin (diferuloylmethane) is known for anti-hypertrophic effects, but low bioavailability makes it unsuitable to exploit its pharmacological properties. We assessed the efficacy of nanotized curcumin, i.e. nanocurcumin, in ameliorating hypoxia-induced hypertrophy and apoptosis in H9c2 cardiomyoblasts and compared it to curcumin. H9c2 cardiomyoblasts were challenged with 0.5 % oxygen, for 24 h to assess hypoxia-induced oxidative damage, hypertrophy and consequent apoptosis. The molecular mechanism underlying the protective efficacy of nanocurcumin was evaluated in regulating Raf-1/Erk-1/2 apoptosis by caspase-3/-7 pathway and oxidative stress. Nanocurcumin ameliorated hypoxia-induced hypertrophy and apoptosis in H9c2 cells significantly (p ≤ 0.01), by downregulating atrial natriuretic factor expression, caspase-3/-7 activation, oxidative stress and stabilizing hypoxia-inducible factor-1α (HIF-1α) better than curcumin. Nanocurcumin provides insight into its use as a potential candidate in curing hypoxia-induced cardiac pathologies by restoring oxidative balance. Topics: Animals; Apoptosis; Caspase 3; Caspase 7; Cell Hypoxia; Cells, Cultured; Curcumin; Hypertrophy; Myoblasts, Cardiac; Nanostructures; Oxidation-Reduction; Oxidative Stress; Proteins; Vascular Endothelial Growth Factor A | 2015 |
Analysis of the tumoricidal and anti-cachectic potential of curcumin.
Curcumin, the extract of the rhizome of Curcuma longa, is known for its health-promoting properties in traditional medicine. It has anti-inflammatory, antitumor and antioxidant properties and stimulates appetite. In the present study, we investigated the stability of curcumin and its effect on cytotoxicity, apoptosis and melanin content in melanoma cells and the effect on atrophic C2C12 muscle cells. Cytotoxicity of curcumin was dose-dependent and the EC50 for 24-h incubation was 69 μM. Saturation was reached at 30 μM for a 48-h incubation. The EC50 for 24-h incubation with degraded curcumin solution was 116 μM and that for 48-h was 94 μM. Curcumin induced a strong increase in caspase-3/7 activity at 30-40 μM. Electrical impedance measurements showed that sub-toxic doses of curcumin counteracted atrophy in an in vitro model system. These findings indicate not only the positive effects of curcumin on melanoma cells in vitro, but also that curcumin was able to considerably trigger anti-cachectic effects in vitro. However, the importance of the stability of curcumin and its tumoricidal and anti-cachectic potential might play a pivotal role in its use in the nutrition and health industrie since it degrades rapidly in aqueous solutions. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Atrophy; Cachexia; Caspases; Cell Death; Cell Survival; Curcumin; Enzyme Activation; Glycoproteins; Hypertrophy; Inhibitory Concentration 50; Melanoma, Experimental; Mice; Toxins, Biological | 2014 |