curcumin and Hyperplasia

curcumin has been researched along with Hyperplasia* in 9 studies

Trials

1 trial(s) available for curcumin and Hyperplasia

ArticleYear
Inflammatory and Metabolic Biomarker Assessment in a Randomized Presurgical Trial of Curcumin and Anthocyanin Supplements in Patients with Colorectal Adenomas.
    Nutrients, 2023, Sep-07, Volume: 15, Issue:18

    Colorectal cancer prevention is crucial for public health, given its high mortality rates, particularly in young adults. The early detection and treatment of precancerous lesions is key to preventing carcinogenesis progression. Natural compounds like curcumin and anthocyanins show promise in impeding adenomatous polyp progression in preclinical models. We conducted a randomized, double-blind, placebo-controlled, phase II presurgical trial in 35 patients with adenomatous polyps to explore the biological effects of curcumin and anthocyanins on circulating biomarkers of inflammation and metabolism. No significant difference in biomarker changes by treatment arm was observed. However, the network analysis before treatment revealed inverse correlations between adiponectin and BMI and glycemia, as well as direct links between inflammatory biomarkers and leptin and BMI. In addition, a considerable inverse relationship between adiponectin and grade of dysplasia was detected after treatment (corr = -0.45). Finally, a significant increase in IL-6 at the end of treatment in subjects with high-grade dysplasia was also observed (

    Topics: Adenoma; Adiponectin; Anthocyanins; Biomarkers; Carcinogenesis; Colorectal Neoplasms; Curcumin; Humans; Hyperplasia; Inflammation; Young Adult

2023

Other Studies

8 other study(ies) available for curcumin and Hyperplasia

ArticleYear
Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats.
    Drug design, development and therapy, 2018, Volume: 12

    Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease characterized by aggressive and symmetric polyarthritis. Mammalian target of rapamycin (mTOR) was reported to be a new target for RA therapy and its inhibitor rapamycin can significantly reduce the invasive force of fibroblast-like synoviocytes. Here, we determined the effect of curcumin to alleviate inflammation and synovial hyperplasia for the therapy of RA.. Collagen-induced arthritis (CIA) was developed in Wistar rats and used as a model resembling RA in humans. Rats were treated with curcumin (200 mg/kg) and the mTOR inhibitor rapamycin (2.5 mg/kg) daily for 3 weeks. Effects of the treatment on local joint, peripheral blood, and synovial hyperplasia in the pathogenesis of CIA were analyzed.. Curcumin and rapamycin significantly inhibited the redness and swelling of ankles and joints in RA rats. Curcumin inhibited the CIA-induced mTOR pathway and the RA-induced infiltration of inflammatory cells into the synovium. Curcumin and rapamycin treatment inhibited the increased levels of proinflammatory cytokines including IL-1β, TNF-α, MMP-1, and MMP-3 in CIA rats.. Our findings show that curcumin alleviates CIA-induced inflammation, synovial hyperplasia, and the other main features involved in the pathogenesis of CIA via the mTOR pathway. These results provide evidence for the anti-arthritic properties of curcumin and corroborate its potential use for the treatment of RA.

    Topics: Animals; Anti-Inflammatory Agents; Antirheumatic Agents; Arthritis, Experimental; Collagen Type II; Curcumin; Hyperplasia; Inflammation Mediators; Interleukin-1beta; Male; Matrix Metalloproteinase 1; Matrix Metalloproteinase 3; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Rats, Wistar; Signal Transduction; Sirolimus; Synovial Membrane; Synovitis; TOR Serine-Threonine Kinases; Tumor Necrosis Factor-alpha

2018
Photopreventive Effect and Mechanism of AZD4547 and Curcumin C3 Complex on UVB-Induced Epidermal Hyperplasia.
    Cancer prevention research (Philadelphia, Pa.), 2016, Volume: 9, Issue:4

    Aggressive cutaneous squamous cell carcinoma (cSCC) of the skin is the second most common type of skin cancer in the United States due to high exposure to ultraviolet B (UVB) radiation. In our previous studies, Curcumin C3 complex (C3), a standardized preparation of three curcumonoids, delayed UVB-induced tumor incidence and inhibited multiplicity. Exposure to UVB activates mTOR and FGFR signaling that play a key role in skin tumorigenesis. The purpose of this study was to investigate the efficacy of C3 complex to afford protection against acute UVB-induced hyperproliferation by targeting the mTOR and FGFR signaling pathways. Pretreatment with C3 complex significantly inhibited UVB-induced FGF-2 induction, FGF-2-induced cell proliferation, progression and colony formation, mTORC1 and mTORC2 activation, and FGFR2 phosphorylation in the promotion-sensitive JB6 cells epithelial cells. Further, FGFR was critical for UVB-induced mTOR activation, suggesting an important role of FGFR2 in UVB-induced mTOR signaling. SKH-1 mice pretreated with C3 (15 mg/kg/b.w.) for 2 weeks followed by a single exposure to UVB (180 mj/cm(2)) significantly attenuated UVB-induced mTORC1, mTORC2, and FGFR2 activation. To further assess the role of FGFR in UVB-induced hyperproliferation, SKH-1 mice were pretreated with AZD4547 (5 mg/kg/b.w.); a selective pan-FGFR kinase inhibitor followed by single exposure to UVB (180 mj/cm(2)). AZD4547 significantly inhibited UVB-induced mTORC1 and mTORC2 activation, epidermal hyperplasia and hyperproliferation. Our studies underscore the importance of FGFR signaling in UVB-induced acute skin changes and the role of FGFR/mTOR signaling in mediating the effects of C3 complex in the pathogenesis of skin cancer.

    Topics: Animals; Antineoplastic Agents; Benzamides; Carcinoma, Squamous Cell; Cell Line; Cell Proliferation; Curcumin; Epidermis; Female; Fibroblast Growth Factor 2; Humans; Hyperplasia; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Hairless; Multiprotein Complexes; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Pyrazoles; Receptor, Fibroblast Growth Factor, Type 2; Signal Transduction; Skin Neoplasms; TOR Serine-Threonine Kinases; Ultraviolet Rays

2016
Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway.
    Clinical and experimental pharmacology & physiology, 2015, Volume: 42, Issue:5

    Previous studies have shown that curcumin alleviates asthma in vivo. However, the relationship between curcumin and the nuclear factor-E2-related factor 2 (Nrf2)/haem oxygenase (HO)-1 pathway in asthma treatment remains unknown. The aim of the present study was to investigate the mechanisms of curcumin involved in the amelioration of airway inflammation in a mouse asthma model. Curcumin was administrated to asthmatic mice, and bronchoalveolar lavage fluid was collected. Inflammatory cell infiltration was measured by Giemsa staining. Immunoglobulin E production in bronchoalveolar lavage fluid was measured by enzyme-linked immunosorbent assay. Histological analyses were evaluated with haematoxylin-eosin and periodic acid-Schiff staining. Airway hyperresponsiveness was examined by whole-body plethysmography. Nuclear factor-E2-related factor 2, HO-1, nuclear factor-κB and inhibitory κB/p-inhibitory κB levels in lung tissues were detected by western blot, and Nrf2 activity was measured by electrophoretic mobility shift assay. Tumour necrosis factor-α, interleukin (IL)-1β, and IL-6 levels in the small interfering RNA-transfected cells were detected by enzyme-linked immunosorbent assay. Curcumin treatment significantly reduced immunoglobulin E production, attenuated inflammatory cell accumulation and goblet cell hyperplasia, and ameliorated mucus secretion and airway hyperresponsiveness. Nuclear factor-E2-related factor 2 and HO-1 levels in lung tissues were significantly increased. Meanwhile, Nrf2 activity was enhanced. Nuclear factor-κB and p-inhibitory κB levels were elevated in the lung tissue of ovalbumin-challenged mice. Both were restored to normal levels after curcumin treatment. Haem oxygenase-1 and nuclear Nrf2 levels were enhanced in dose- and time-dependent manners in curcumin-treated RAW264.7 cells. Curcumin blocked lipopolysaccharide-upregulated expression of tumour necrosis factor-α, IL-1β, and IL-6. After the cells were transfected with HO-1 or Nrf2 small interfering RNA, lipopolysaccharide-induced pro-inflammation cytokine expression was significantly restored. In summary, curcumin might alleviate airway inflammation in asthma through the Nrf2/HO-1 pathway, potentially making it an effective drug in asthma treatment.

    Topics: Animals; Asthma; Curcumin; Cytokines; Female; Gene Knockdown Techniques; Goblet Cells; Heme Oxygenase-1; Hyperplasia; Lipopolysaccharides; Lung; Mice; NF-E2-Related Factor 2; Ovalbumin; RAW 264.7 Cells; RNA, Small Interfering; Signal Transduction

2015
Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy.
    International journal of molecular medicine, 2015, Volume: 36, Issue:6

    Delayed reendothelialization and intimal hyper-plasia (IH) contribute to the failure of vascular interventions. Curcumin (Cur) has been used for various types of diseases with antioxidant, antiproliferative and anti‑inflammatory effects. However, investigations involving the application of Cur in inhibiting IH are limited. The aim of the present study was to evaluate the potential therapeutic effects of Cur and its underlying mechanisms on a rat model of carotid artery (CA) intimal injury. In vitro, an endothelial cell (EC) migration assay was conducted using cultured primary human umbilical vein endothelial cells (HUVECs) that were exposed to Cur. In vivo, CA angioplasty injury was used to generate a rat model of intimal injury. CAs were collected at 3 days, and 1 and 4 weeks after injury, respectively, for western blot analysis and double-immunofluorescence analyses, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, oxidative stress indicator analysis and hematoxylin and eosin staining of the neointima. In vivo, Cur significantly enhanced the migration and healing of HUVECs and simultaneously promoted microtubule-associated protein light chain 3-II (LC3-II) expression when HUVECs were subjected to an artificial scratch. In vitro, endangium from the Cur-treated rats exhibited a significantly reduced number of apoptotic ECs and oxidative stress level compared to that of the sham group. In addition, Cur treatment markedly improved quantification of the LC3-II concomitant with the downregulation of p62 in the injured CA. At 1 week following injury, sizable neointimal lesions had developed, although prominent intima thickening was not observed. At 4 weeks, apparent hemadostenosis occurred resulting from the exorbitance IH. Cur treatment markedly reduced the thickness of the neointimal lesion. It is noteworthy that high-dose Cur may have exerted more significant effects than low-dose Cur. Cur can potentially become a therapeutic drug for angiostenosis by imparting a protective effect that accelerates reendothelialization and ameliorates IH and was mediated by its pro-autophagic effect.

    Topics: Angioplasty, Balloon; Animals; Anti-Inflammatory Agents, Non-Steroidal; Autophagy; Blotting, Western; Carotid Artery Injuries; Cells, Cultured; Curcumin; Down-Regulation; Heat-Shock Proteins; Human Umbilical Vein Endothelial Cells; Humans; Hyperplasia; Male; Microscopy, Fluorescence; Microtubule-Associated Proteins; Rats, Sprague-Dawley; Sequestosome-1 Protein; Tunica Intima; Up-Regulation

2015
Chemopreventive effects of 4-methylthio-3-butenyl Isothiocyanate (Raphasatin) but not curcumin against pancreatic carcinogenesis in hamsters.
    Journal of agricultural and food chemistry, 2013, Mar-06, Volume: 61, Issue:9

    The modifying effects of 4-methylthio-3-butenyl isothiocyanate (MTBITC) and curcumin were investigated in N-nitrosobis(2-oxopropyl)amine (BOP)-initiated hamsters. Male 6-week-old Syrian hamsters were subcutaneously injected with 10 mg/kg body weight (b.w.) of BOP four times a week, and fed a diet supplemented with 80 mg/kg diet of MTBITC, equivalent to 4.6 mg/kg b.w./day for the initiation stage or 3.8 mg/kg b.w./day for the postinitiation stage administration, respectively, or 2000 mg/kg diet of curcumin, equivalent to 118.8 mg/kg b.w./day for the initiation stage or 100.8 mg/kg b.w./day for the postinitiation stage administration, respectively. The incidence of combined pancreatic lesions, including atypical hyperplasias and adenocarcinomas, was significantly decreased to 55% (P < 0.05) by the 80 mg/kg diet MTBITC given during the initiation stage as compared to the BOP alone group (85%) but not by the curcumin administration at 16 weeks after the BOP-treatment. In the second study, the multiplicity of combined pancreatic lesions was also significantly decreased to 0.50 ± 0.51 (P < 0.05) by 700 mg/kg diet MTBITC given in the initiation stage (equivalent to 59.0 mg/kg b.w./day) as compared to the BOP alone group (1.10 ± 1.02). Our results indicate that the naturally occurring isothiocyanate MTBITC may exert preventive effects against BOP-initiation of hamster pancreatic carcinogenesis.

    Topics: Adenocarcinoma; Animals; Anticarcinogenic Agents; Carcinogens; Cricetinae; Curcumin; Diet; Hyperplasia; Isothiocyanates; Male; Mesocricetus; Nitrosamines; Pancreas; Pancreatic Neoplasms

2013
[Chemopreventive effect of boswellic acid and curcumin on 7,12-dimethyl benzanthracene-induced hamster cheek pouch carcinogenesis].
    Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology, 2011, Volume: 46, Issue:11

    To evaluate the chemopreventive effects of boswellic acid and curcumin on 7,12-dimethyl benzanthracene(DMBA)-induced oral carcinogenesis in the hamster cheek pouch model.. Male Syrian golden hamsters (6 - 8 weeks old, 80 - 130 g in weight) were randomly divided into seven groups, with group A serving as the untreated negative control. The left cheek pouch of the remaining hamsters was topically treated with 0.5% DMBA in mineral oil three times a week for 6 weeks. They were then randomized to six groups with group B serving as a positive control and receiving no further treatment. Groups C-G were treated topically with 5, 10 mg/L boswellic acid, 5, 10 µmol/L curcumin, or the combination of 5 mg/L boswellic acid and 5 µmol/L curcumin three times per week for 18 weeks. The animals were injected with bromodeoxyuridine intraperitoneally at 50 mg/kg 2 h prior to killing. At the 25 th week all the hamsters were sacrificed and cheek pouch tissue was harvested. One half of the tissue was snap frozen in liquid nitrogen for analysis of arachidonic acid metabolites, and the other half was fixed in 10% phosphate-buffered saline(PBS)-buffered formalin for histopathological examination.. Six-weeks of DMBA followed by 18-weeks of topical application of boswellic acid and curcumin, both boswellic acid (5, 10 mg/L) and curcumin (5, 10 µmol/L) significantly inhibited the incidence from 93.8% to 73.9% (P > 0.05), numbers from 2.19 ± 0.98 to 1.13 ± 0.81 (P < 0.01) and size of visible tumors. Microscopically the incidence of squamous cell carcinoma and BrdU index were also significantly suppressed by boswellic acid and curcumin.. Both boswellic acid and curcumin were effective in preventing oral carcinogenesis in DMBA-induced hamster cheek pouch model.

    Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Antineoplastic Agents; Bromodeoxyuridine; Carcinogenesis; Carcinogens; Carcinoma, Squamous Cell; Cheek; Cricetinae; Curcumin; Hyperplasia; Leukotriene B4; Male; Mesocricetus; Mouth Neoplasms; Precancerous Conditions; Random Allocation; Triterpenes

2011
Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2000, Volume: 38, Issue:11

    Curcumin (CCM), a major yellow pigment of turmeric obtained from powdered rhizomes of the plant Curcuma longa Linn, is commonly used as coloring agent in foods, drugs and cosmetics. In this study we report that gavage administration of 200 mg/kg or 600 mg/kg CCM effectively suppressed diethylnitrosamine (DEN)-induced liver inflammation and hyperplasia in rats, as evidenced by histopathological examination. Immunoblotting analysis showed that CCM strongly inhibited DEN-mediated the increased expression of oncogenic p21(ras) and p53 proteins in liver tissues of rats. In cell-cycle-related proteins, CCM selectively reduced the expression of proliferating cell nuclear antigen (PCNA), cyclin E and p34(cdc2), but not Cdk2 or cyclin D1. Moreover, CCM also inhibited the DEN-induced increase of transcriptional factor NF-kappa B. However, CCM failed to affect DEN-induced c-Jun and c-Fos expression. It has become widely recognized that the development of human hepatocellular carcinoma (HCC) is predominantly due to the chronic inflammation by virus, bacteria or chemical. Our results suggest a potential role for CCM in the prevention of HCC.

    Topics: Animals; Blotting, Western; Carcinoma, Hepatocellular; CDC2 Protein Kinase; Cell Cycle Proteins; Chemical and Drug Induced Liver Injury; Curcumin; Diethylnitrosamine; Hyperplasia; Liver; Liver Neoplasms; Male; NF-kappa B; Oncogene Protein p21(ras); Organ Size; Proliferating Cell Nuclear Antigen; Rats; Rats, Wistar; Tumor Suppressor Protein p53

2000
Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate- and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis.
    Carcinogenesis, 1994, Volume: 15, Issue:10

    Expression of c-jun protein (c-Jun) was observed in normally proliferating JB6 cells but not in confluent cells. Reduction of the serum concentration from 5% to 2% in the cell culture medium caused JB6 cells to enter a quiescent non-proliferating state and down-regulated the expression of c-Jun. Treatment of quiescent JB6 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) (10 ng/ml) for 24 h markedly stimulated the formation of c-Jun and caused morphological changes. Treatment of JB6 cells with TPA for 48 h resulted in transformed foci with mixed cell populations. Although some cells in these foci expressed high levels of c-Jun, many other cells did not. The increased expression of c-Jun and morphological changes observed at 24 h after treatment of JB6 cells with TPA (10 ng/ml) was inhibited by curcumin (10 nmol/ml). Treatment of JB6 cells with 2.5, 5 or 10 nmol curcumin/ml inhibited the formation of TPA-induced anchorage-independent colonies that grow in soft agar by 31%, 43% and 77%, respectively. Although inhibition of cell proliferation was not observed with 2.5 nmol curcumin/ml, higher concentrations did inhibit cell proliferation. Topical application of 5 nmol TPA to the backs of CD-1 mice once a day for 5 days caused epidermal hyperplasia and the levels of c-Jun were increased in the suprabasal layer of the epidermis and in the muscle layer of the dermis. This treatment also increased c-fos protein (c-Fos) expression in the muscle layer, but there was little or no increase in the expression of c-Fos in the basal or suprabasal layer of the epidermis. Topical application of 10 mumol curcumin together with 5 nmol TPA once a day for 5 days strongly inhibited TPA-induced epidermal hyperplasia and c-Jun and c-Fos expression. A single application of 180 mJ/cm2 of ultraviolet B light (UVB) to the backs of SKH-1 mice caused epidermal hyperplasia and expression of c-Fos and c-Jun in the muscle layer of the dermis and of c-Fos in the suprabasal layer of the epidermis. Maximum effects were observed at 6 days after UVB exposure. Application of 10 mumol curcumin to mouse skin twice a day for 5 days immediately after UVB exposure had only a small/variable inhibitory effect on UVB-induced increases in the expression of c-Fos and c-Jun and on epidermal hyperplasia.(ABSTRACT TRUNCATED AT 400 WORDS)

    Topics: Animals; Cell Division; Cell Transformation, Neoplastic; Cells, Cultured; Cocarcinogenesis; Curcumin; Drug Interactions; Female; Gene Expression Regulation; Hyperplasia; Mice; Mice, Hairless; Proto-Oncogene Proteins c-fos; Proto-Oncogene Proteins c-jun; Skin; Skin Neoplasms; Tetradecanoylphorbol Acetate; Ultraviolet Rays

1994