curcumin has been researched along with Glioblastoma* in 94 studies
11 review(s) available for curcumin and Glioblastoma
Article | Year |
---|---|
Effects of curcumin nanodelivery on schizophrenia and glioblastoma.
Curcumin is a natural polyphenol, which has a variety of pharmacological activities, including, antineoplastic, antioxidative and neuroprotective effects. Recent studies provided evidence for the bioactive role of curcumin in the prevention and treatment of various central nervous system (CNS)-related diseases including Parkinson's, Alzheimer's, Schizophrenia disease and glioma neoplasia. Schizophrenia is a disabling psychiatric disorder related with an aberrant functional coupling between hippocampus and prefrontal cortex that might be crucial for cognitive dysfunction. Animal studies have lent support to the hypothesis that curcumin could improve cognitive functioning and enhance cell proliferation of dentate gyrus. In relation to brain tumors, specifically gliomas, the antineoplastic action of curcumin is based on the inhibition of cell growth promoting apoptosis or autophagy and preventing angiogenesis. However, one of the main impediments for the application of curcumin to patients is its low bioavailability. In intracranial lesions, curcumin has problems to cross the blood-brain barrier (BBB). Currently nano-based drug delivery systems are opening a new horizon to tackle this problem. The bioavailability and effective release of curcumin can be made possible in the form of nanocurcumin. This nanoformulation preserves the properties of curcumin and makes it reach tissues with pathology. This review try to study the beneficial effects of the curcumin nanodelivery in central nervous pathologies such us schizophrenia and glioma disease. Topics: Animals; Antineoplastic Agents; Blood-Brain Barrier; Curcumin; Glioblastoma; Humans; Schizophrenia | 2023 |
A New Perspective on Cancer Therapy: Changing the Treaded Path?
During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways. Topics: Animals; Curcumin; Female; Glioblastoma; Humans; Killer Cells, Natural; Mice; Neoplasms, Experimental; Nitric Oxide; T-Lymphocytes, Cytotoxic; Tumor-Associated Macrophages; Uterine Cervical Neoplasms | 2021 |
Anti-tumor Effects of Curcuminoids in Glioblastoma Multiforme: An Updated Literature Review.
Glioblastoma Multiforme (GBM) is a poorly curable brain tumor because of its extremely invasive nature. Curcuminoids, as potential phytochemicals extracted from Curcuma Longa L., have been documented for their chemopreventive and antitumor activities against several types of malignancies. These compounds exert these effects via modulation of multiple signaling pathways and molecular targets at different stages of tumor progression, proliferation, and metastasis. In experimental studies, curcuminoids have demonstrated promising therapeutic benefits to overcome GBM. Curcuminoids have been shown to exert their anti-GBM effects through regulation of angiogenesis, apoptosis, autophagy, metastasis, invasion, as well as potential molecular targets, including receptor tyrosine kinases, Sonic Hedgehog, and NF-κB. This study reviews the observations regarding the impact of curcumin and its derivatives on GBM and the potential of translating the research findings into the clinic. Topics: Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Curcumin; Diarylheptanoids; Glioblastoma; Hedgehog Proteins; Humans | 2021 |
Anticancer Mechanism of Curcumin on Human Glioblastoma.
Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin's anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed. Topics: Antineoplastic Agents; Brain Neoplasms; Curcumin; Glioblastoma; Humans; Signal Transduction | 2021 |
Therapeutic potentials of curcumin in the treatment of glioblstoma.
Glioblastoma multiforme (GBM), a greatly aggressive malignancy of the brain, is correlated with a poor prognosis and low rate of survival. Up to now, chemotherapy and radiation therapy after surgical approaches have been the treatments increasing the survival rates. The low efficacy of mentioned therapies as well as their side-effects has forced researchers to explore an appropriate alternative or complementary treatment for glioblastoma. In experimental models, it has been shown that curcumin has therapeutic potentials to fight against GBM. Given that curcumin has pharmacological effects against cancer stem cells, as major causes of resistance to therapy in glioblastoma cells. Moreover, it has been showed that curcumin exerts its therapeutic effects on GBM cells via affecting on apoptosis, oxidant system, and inflammatory pathways. Curcumin would possess a synergistic impact with chemotherapeutic agents. Herein, we summarized the current findings on curcumin as therapeutic agent in the treatment of GBM. Topics: Antineoplastic Agents; Cell Proliferation; Curcumin; Drug Screening Assays, Antitumor; Glioblastoma; Humans; Lipids; Molecular Structure; Nanoparticles | 2020 |
The Multi-Faceted Effect of Curcumin in Glioblastoma from Rescuing Cell Clearance to Autophagy-Independent Effects.
The present review focuses on the multi-faceted effects of curcumin on the neurobiology glioblastoma multiforme (GBM), with a special emphasis on autophagy (ATG)-dependent molecular pathways activated by such a natural polyphenol. This is consistent with the effects of curcumin in a variety of experimental models of neurodegeneration, where the molecular events partially overlap with GBM. In fact, curcumin broadly affects various signaling pathways, which are similarly affected in cell degeneration and cell differentiation. The antitumoral effects of curcumin include growth inhibition, cell cycle arrest, anti-migration and anti-invasion, as well as chemo- and radio-sensitizing activity. Remarkably, most of these effects rely on mammalian target of rapamycin (mTOR)-dependent ATG induction. In addition, curcumin targets undifferentiated and highly tumorigenic GBM cancer stem cells (GSCs). When rescuing ATG with curcumin, the tumorigenic feature of GSCs is suppressed, thus counteracting GBM establishment and growth. It is noteworthy that targeting GSCs may also help overcome therapeutic resistance and reduce tumor relapse, which may lead to a significant improvement of GBM prognosis. The present review focuses on the multi-faceted effects of curcumin on GBM neurobiology, which represents an extension to its neuroprotective efficacy. Topics: Autophagy; Cell Differentiation; Cell Movement; Cell Proliferation; Curcumin; Glioblastoma; Humans; Neoplasm Invasiveness; Neoplastic Stem Cells; Signal Transduction | 2020 |
Antitumor Activity of Curcumin in Glioblastoma.
Current standard-of-care treatment for glioblastoma, the most common malignant primary central nervous system (CNS) tumor, consists of surgical resection followed by adjuvant chemotherapy and radiation (Stupp protocol), providing an overall median survival of 15 months. With additional treatment using tumor-treating fields (Optune Topics: Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Curcuma; Curcumin; Glioblastoma; Humans; Plant Extracts | 2020 |
Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme.
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Despite standard multimodality treatment, the highly aggressive nature of GBM makes it one of the deadliest human malignancies. The anti-cancer effects of dietary phytochemicals like curcumin provide new insights to cancer treatment. Evaluation of curcumin's efficacy against different malignancies including glioblastoma has been a motivational research topic and widely studied during the recent decade. In this review, we discuss the recent observations on the potential therapeutic effects of curcumin against glioblastoma. Curcumin can target multiple signaling pathways involved in developing aggressive and drug-resistant features of glioblastoma, including pathways associated with glioma stem cell activity. Notably, combination therapy with curcumin and chemotherapeutics like temozolomide, the GBM standard therapy, as well as radiotherapy has shown synergistic response, highlighting curcumin's chemo- and radio-sensitizing effect. There are also multiple reports for curcumin nanoformulations and targeted forms showing enhanced therapeutic efficacy and passage through blood-brain barrier, as compared with natural curcumin. Furthermore, in vivo studies have revealed significant anti-tumor effects, decreased tumor size and increased survival with no notable evidence of systemic toxicity in treated animals. Finally, a pharmacokinetic study in patients with GBM has shown a detectable intratumoral concentration, thereby suggesting a potential for curcumin to exert its therapeutic effects in the brain. Despite all the evidence in support of curcumin's potential therapeutic efficacy in GBM, clinical reports are still scarce. More studies are needed to determine the effects of combination therapies with curcumin and importantly to investigate the potential for alleviating chemotherapy- and radiotherapy-induced adverse effects. Topics: Animals; Brain Neoplasms; Combined Modality Therapy; Curcumin; Glioblastoma; Humans | 2019 |
Modulation of Biological Activities in Glioblastoma Mediated by Curcumin.
Curcumin is an alkaloid with various pharmacologic properties; numerous investigations have suggested that in the Central Nervous System, Curcumin has anti-inflammatory, antimicrobial, antioxidant, and antitumor effects. Gliomas are the most common primary intracranial tumors in adults. The prognosis of glioblastoma is still dismal. In this review, we profile that Curcumin could suppress cell proliferation and induce apoptosis of cancer cells and genomic modulation. In particular, Curcumin could exert its therapeutic effect via modulating miRNA, affecting a variety of miRNAs involved in the response to cancer therapy. The combination of Curcumin with chemotherapeutic drugs or radiotherapy could prime the sensitivity of cancer cells to chemotherapy or radiotherapy. We also discuss the use of exosomes as Curcumin delivery vehicles. In this context, exosomes containing Curcumin may change the behavior of recipient cells by targeting a sequence of cellular and molecular pathways. Hence, the application of exosomes containing Curcumin may prove to be an emerging area of research in cancer therapy. Topics: Animals; Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Proliferation; Curcumin; Glioblastoma; Humans | 2019 |
Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.
GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Brain; Brain Neoplasms; Curcuma; Curcumin; Glioblastoma; Humans | 2016 |
Curcumin for the Treatment of Glioblastoma.
Glioblastoma multiforme is a highly aggressive primary cancer of the brain associated with a poor prognosis. Modest increases in survival can sometimes be achieved with the use of temozolomide and radiation therapy after surgery, but second-line therapy after recurrence has a limited efficacy. Curcumin has demonstrated promising results against this form of cancer in experimental models. The reported activity of curcumin against cancer stem cells, a major cause of glioblastoma resistance to therapy, and its ability to augment the apoptotic effects of ceramides, suggest it would have a synergistic effect with cytotoxic chemotherapy agents currently used in second-line therapy, such as lomustine. Topics: Blood-Brain Barrier; Curcumin; Drug Therapy, Combination; Glioblastoma; Humans; Prognosis; Survival Rate | 2015 |
83 other study(ies) available for curcumin and Glioblastoma
Article | Year |
---|---|
Cytotoxicity Mechanisms of Blue-Light-Activated Curcumin in T98G Cell Line: Inducing Apoptosis through ROS-Dependent Downregulation of MMP Pathways.
We examined the photodynamic activation of Curcumin under blue light in glioblastoma T98G cells. The therapeutic effect of Curcumin, in both the absence and presence of blue light, was measured by the MTT assay and apoptosis progression using flow cytometry. Fluorescence imaging was carried out to evaluate Curcumin uptake. Photodynamic activation of Curcumin (10 µM), in the presence of blue light, enhanced its cytotoxic effect, resulting in the activation of ROS-dependent apoptotic pathways in T98G cells. The gene expression studies showed the expression of matrixes metalloproteinase 2 (MMP2) and 9 (MMP9) decrease with Curcumin (10 µM) under blue light exposure, indicating possible proteolytic mechanisms. Moreover, the cytometric appearance displayed that the expressions of NF-κB and Nrf2 were found to be increased upon exposure to blue light, which revealed a significant induction of expression of nuclear factor as a result of blue-light-induced oxidative stress and cell death. These data further demonstrate that Curcumin exhibited a photodynamic effect via induction of ROS-mediated apoptosis in the presence of blue light. Our results suggest that the application of blue light enhances the therapeutic efficacy of Curcumin in glioblastoma because of the phototherapeutic effect. Topics: Apoptosis; Cell Line; Cell Line, Tumor; Curcumin; Down-Regulation; Glioblastoma; Humans; Matrix Metalloproteinase 2; Photochemotherapy; Reactive Oxygen Species | 2023 |
Exosomes released from U87 glioma cells treated with curcumin and/or temozolomide produce apoptosis in naive U87 cells.
Glioblastoma (GBM) remains the most lethal brain tumor without any curative treatment. Exosomes can mediate cell-to-cell communication, and may function as a new type of targeted therapy. In this study, the therapeutic benefits of exosomes generated by U87 cells treated with curcumin and/or temozolomide were investigated. The cells were cultured and treated with temozolomide (TMZ), curcumin (Cur), or their combination (TMZ+Cur). Exosomes were isolated with a centrifugation kit and characterized using DLS, SEM, TEM, and Western blotting. The levels of exosomal BDNF and TNF-α were measured. Naïve U87 cells were treated with the isolated exosomes, and the effects on apoptosis-related proteins HSP27, HSP70, HSP90, and P53 were assessed. All exosomes, Cur-Exo, TMZ-Exo, and TMZ+Cur-Exo increased cleaved caspase 3, Bax, and P53 proteins, while reducing HSP27, HSP70, HSP90, and Bcl2 proteins. Moreover all treatment groups increased apoptosis in naïve U87 recipient cells. Exosomes released from treated U87 cells had less BDNF and more TNF-α compared to exosomes released from naive U87 cells. In conclusion, we showed for the first time that exosomes released from drug-treated U87 cells could be a new therapeutic approach in glioblastoma, and could reduce the side effects produced by drugs alone. This concept needs to be further examined in animal models before clinical trials could be considered. Topics: Animals; Antineoplastic Agents, Alkylating; Apoptosis; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Cell Line, Tumor; Curcumin; Drug Resistance, Neoplasm; Exosomes; Glioblastoma; Glioma; HSP27 Heat-Shock Proteins; Temozolomide; Tumor Necrosis Factor-alpha; Tumor Suppressor Protein p53 | 2023 |
The evaluation of chitosan hydrogel based curcumin effect on DNMT1, DNMT3A, DNMT3B, MEG3, HOTAIR gene expression in glioblastoma cell line.
Cancer is one of the most important causes of death worldwide. Some types of cancer, including glioblastoma, with a high potential for growth, invasion, and resistance to general treatments, chemotherapy, and radiotherapy, have a high potential for recurrence. Many chemical drugs have been used to treat it, but herbal drugs are more effective with fewer side effects; Therefore, this research aims to investigate the effect of curcumin-chitosan nano-complex on the expression of MEG3, HOTAIR, DNMT1, DNMT3A, DNMT3B genes in the glioblastoma cell line.. In this research, glioblastoma cell line, PCR and spectrophotometry techniques, MTT test and transmission, field emission transmission, and fluorescent electron microscopes were used.. The morphological examination of the curcumin-chitosan nano-complex was without clumping, and the fluorescent microscope examination showed the nano-complex enters the cell and affects the genes expression. In its bioavailability studies, it was found that it significantly increases the death of cancer cells in a dose- and time-dependent manner. Gene expression tests showed that this nano-complex increased MEG3 gene expression compared to the control group, which is statistically significant (p < 0.05). It also decreased HOTAIR gene expression compared to the control group, which was not statistically significant (p > 0.05). It decreased the expression of DNMT1, DNMT3A, and DNMT3B genes compared to the control group, which is statistically significant (p < 0.05).. By using active plant substances such as curcumin, the active demethylation of brain cells can be directed to the path of inhibiting the growth of brain cancer cells and eliminating them. Topics: Cell Line, Tumor; Chitosan; Curcumin; DNA Modification Methylases; Gene Expression; Glioblastoma; Humans; Hydrogels | 2023 |
Effect of folic acid-linked chitosan-coated PLGA-based curcumin nanoparticles on the redox system of glioblastoma cancer cells.
Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status.. The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes.. The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes.. CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance. Topics: Antioxidants; Catalase; Chitosan; Curcumin; Folic Acid; Glioblastoma; Glutaredoxins; Nanoparticles; Oxidation-Reduction; Polylactic Acid-Polyglycolic Acid Copolymer; Reactive Oxygen Species; Superoxide Dismutase; Thioredoxins | 2023 |
Optimized lipopolymers with curcumin to enhance AZD5582 and GDC0152 activity and downregulate inhibitors of apoptosis proteins in glioblastoma multiforme.
Inhibition to glioblastoma multiforme (GBM) propagation is a critical challenge in clinical practice because binding of inhibitors of apoptosis proteins (IAPs) to caspase prevents cancer cells from death. In this study, folic acid (FA), lactoferrin (Lf) and rabies virus glycoprotein (RVG) were grafted on lipopolymers (LPs) composed of poly(ε-caprolactone) and Compritol 888 ATO to encapsulate AZD5582 (AZD), GDC0152 (GDC) and curcumin (CURC). The standard deviations of initial particle diameter and particle diameter after storage for 30 days were involved in LP composition optimization. The functionalized LPs were used to permeate the blood-brain barrier (BBB) and constrain IAP quantity in GBM cells. Experimental results revealed that an increase in Span 20 (emulsifier) concentration enlarged the size of LPs, and enhanced the entrapment and releasing efficiency of AZD, DGC and CURC. Topics: Apoptosis; Brain Neoplasms; Curcumin; Glioblastoma; Humans; Lipopolysaccharides | 2023 |
Interaction of curcumin with glioblastoma cells via high and low linear energy transfer radiation therapy inducing radiosensitization effects.
Glioblastoma is a deadly cancer tumor in the brain and has a survival rate of about 15 months. Despite the high mortality rate, temozolomide has proven to increase the survival rate of patients when combined with radiotherapy. However, its effects may be limited because some patients develop therapeutic resistance. Curcumin has proven to be a cancer treatment due to its broad anticancer spectrum, high efficiency and low toxic level. Additionally, curcumin significantly enhanced radiation efficacy under high and low Linear Energy Transfer (LET) radiation conditions in vitro. In combination with radiation, curcumin increased the cell population in the sub-G1 phase and the reactive oxygen species (ROS) level, ultimately increasing GBM cellular apoptosis. The radiosensitizing effects of curcumin are much higher in neutron (high LET)-irradiated cell lines than in γ (low LET)-irradiated cell lines. Curcumin plus neutron combination significantly inhibited cell invasion compared with that of single treatment or curcumin combined γ-ray treatment. Curcumin enhances the radiosensitivity of Glioblastoma (GBM), suggesting it may have clinical utility in combination cancer treatment with neutron high-LET radiation. Topics: Apoptosis; Cell Line, Tumor; Curcumin; Glioblastoma; Humans; Linear Energy Transfer; Radiation Tolerance | 2022 |
Bisdemethoxycurcumin suppresses human brain glioblastoma multiforme GBM 8401 cell migration and invasion via affecting NF-κB and MMP-2 and MMP-9 signaling pathway in vitro.
Human glioblastoma (GBM) is one of the common cancer death in adults worldwide, and its metastasis will lead to difficult treatment. Finding compounds for future to develop treatment is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was isolated from the rhizome of turmeric (Curcuma longa), which has been shown to against many human cancer cells. In the present study, we evaluated the antimetastasis activity of BDMC in human GBM cells. Cell proliferation, cell viability, cellular uptake, wound healing, migration and invasion, and western blotting were analyzed. Results indicated that BDMC at 1.5-3 μM significantly decreased the cell proliferation by MTT assay. BDMC showed the highest uptake by cells at 3 h. After treatment of BDMC at 12-48 h significantly inhibited cell motility in GBM 8401 cells by wound healing assay. BDMC suppressed cell migration and invasion at 24 and 48 h treatment by transwell chamber assay. BDMC significantly decreased the levels of proteins associated with PI3K/Akt, Ras/MEK/ERK pathways and resulted in the decrease in the expressions of NF-κB, MMP-2, MMP-9, and N-cadherin, leading to the inhibition of cell migration and invasion. These findings suggest that BDMC may be a potential candidate for the antimetastasis of human GBM cells in the future. Topics: Brain; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Curcumin; Diarylheptanoids; Glioblastoma; Humans; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Invasiveness; NF-kappa B; Phosphatidylinositol 3-Kinases; Signal Transduction | 2022 |
Curcumin piperidone derivatives induce anti-proliferative and anti-migratory effects in LN-18 human glioblastoma cells.
Curcumin has demonstrated potential cytotoxicity across various cell lines despite its poor bioavailability and rapid metabolism. Therefore, our group have synthesized curcuminoid analogues with piperidone derivatives, FLDP-5 and FLDP-8 to overcome these limitations. In this study, the analogues were assessed on LN-18 human glioblastoma cells in comparison to curcumin. Results from cytotoxicity assessment showed that FLDP-5 and FLDP-8 curcuminoid analogues caused death in LN-18 cells in a concentration-dependent manner after 24-h treatment with much lower IC Topics: Antineoplastic Agents; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Curcumin; Glioblastoma; Humans; Piperidones | 2022 |
Identification of potential targets of the curcumin analog CCA-1.1 for glioblastoma treatment : integrated computational analysis and in vitro study.
The treatment of glioblastoma multiforme (GBM) is challenging owing to its localization in the brain, the limited capacity of brain cells to repair, resistance to conventional therapy, and its aggressiveness. Curcumin has anticancer activity against aggressive cancers, such as leukemia, and GBM; however, its application is limited by its low solubility and bioavailability. Chemoprevention curcumin analog 1.1 (CCA-1.1), a curcumin analog, has better solubility and stability than those of curcumin. In this study, we explored potential targets of CCA-1.1 in GBM (PTCGs) by an integrated computational analysis and in vitro study. Predicted targets of CCA-1.1 obtained using various databases were subjected to comprehensive downstream analyses, including functional annotation, disease and drug association analyses, protein-protein interaction network analyses, analyses of genetic alterations, expression, and associations with survival and immune cell infiltration. Our integrative bioinformatics analysis revealed four candidate targets of CCA-1.1 in GBM: TP53, EGFR, AKT1, and CASP3. In addition to targeting specific proteins with regulatory effects in GBM, CCA-1.1 has the capacity to modulate the immunological milieu. Cytotoxicity of CCA-1.1 was lower than TMZ with an IC50 value of 9.8 μM compared to TMZ with an IC50 of 40 μM. mRNA sequencing revealed EGFR transcript variant 8 was upregulated, whereas EGFRvIII was downregulated in U87 cells after treatment with CCA-1.1. Furthermore, a molecular docking analysis suggested that CCA-1.1 inhibits EGFR with various mutations in GBM, which was confirmed using molecular dynamics simulation, wherein the binding between CCA-1.1 with the mutant EGFR L861Q was stable. For successful clinical translation, the effects of CCA-1.1 need to be confirmed in laboratory studies and clinical trials. Topics: Brain Neoplasms; Cell Line, Tumor; Chemoprevention; Curcumin; ErbB Receptors; Glioblastoma; Humans; Molecular Docking Simulation | 2022 |
Abrogation of Cellular Senescence Induced by Temozolomide in Glioblastoma Cells: Search for Senolytics.
A first-line therapeutic for high-grade glioma, notably glioblastoma (GBM), is the DNA methylating drug temozolomide (TMZ). Previously, we showed that TMZ induces not only apoptosis and autophagy, but also cellular senescence (CSEN). We presented the hypothesis that GBM cells may escape from CSEN, giving rise to recurrent tumors. Furthermore, the inflammatory phenotype associated with CSEN may attenuate chemotherapy and drive tumor progression. Therefore, treatments that specifically target senescent cells, i.e., senolytic drugs, may lead to a better outcome of GBM therapy by preventing recurrences and tumor inflammation. Here, we tested Bcl-2 targeting drugs including ABT-737, ABT-263 (navitoclax), several natural substances such as artesunate, fisetin and curcumin as well as lomustine (CCNU) and ionizing radiation (IR) for their senolytic capacity in GBM cells. Additionally, several proteins involved in the DNA damage response (DDR), ATM, ATR, Chk1/2, p53, p21, NF-kB, Rad51, PARP, IAPs and autophagy, a pathway involved in CSEN induction, were tested for their impact in maintaining CSEN. Treatment of GBM cells with a low dose of TMZ for 8-10 days resulted in >80% CSEN, confirming CSEN to be the major trait induced by TMZ. To identify senolytics, we treated the senescent population with the compounds of interest and found that ABT-737, navitoclax, chloroquine, ATMi, ATRi, BV-6, PX-866 and the natural compounds fisetin and artesunate exhibit senolytic activity, inducing death in senescent cells more efficiently than in proliferating cells. Curcumin showed the opposite effect. No specific effect on CSEN cells was observed by inhibition of Chk1/Chk2, p21, NF-kB, Rad51 and PARP. We conclude that these factors neither play a critical role in maintaining TMZ-induced CSEN nor can their inhibitors be considered as senolytics. Since IR and CCNU did not exhibit senolytic activity, radio- and chemotherapy with alkylating drugs is not designed to eliminate TMZ-induced senescent cancer cells. Topics: Artesunate; Cellular Senescence; Curcumin; Glioblastoma; Humans; Lomustine; Neoplasm Recurrence, Local; NF-kappa B; Poly(ADP-ribose) Polymerase Inhibitors; Senotherapeutics; Temozolomide | 2022 |
Curcumin-based-fluorescent probes targeting ALDH1A3 as a promising tool for glioblastoma precision surgery and early diagnosis.
Glioblastoma (GBM) is the most aggressive primary brain tumour for which both effective treatments and efficient tools for an early-stage diagnosis are lacking. Herein, we present curcumin-based fluorescent probes that are able to bind to aldehyde dehydrogenase 1A3 (ALDH1A3), an enzyme overexpressed in glioma stem cells (GSCs) and associated with stemness and invasiveness of GBM. Two compounds are selective versus ALDH1A3, without showing any appreciable interaction with other ALDH1A isoenzymes. Indeed, their fluorescent signal is detectable only in our positive controls in vitro and absent in cells that lack ALDH1A3. Remarkably, in vivo, our Probe selectively accumulate in glioblastoma cells, allowing the identification of the growing tumour mass. The significant specificity of our compounds is the necessary premise for their further development into glioblastoma cells detecting probes to be possibly used during neurosurgical operations. Topics: Aldehyde Dehydrogenase; Aldehyde Oxidoreductases; Brain Neoplasms; Curcumin; Early Diagnosis; Fluorescent Dyes; Glioblastoma; Humans; Neoplastic Stem Cells | 2022 |
Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells.
Glioblastoma (GBM) recurrences are inevitable, and mainly originate from residual tumor cells and the presence of glioma stem cells (GSC) around the resection cavity borders. We previously showed that the local treatment of GBM with nanomedicine-based Lauroyl-gemcitabine lipid nanocapsules (GemC Topics: Brain Neoplasms; Cell Line, Tumor; Curcumin; Glioblastoma; Glioma; Humans; Hydrogels; Lipids; Nanomedicine; Neoplastic Stem Cells | 2022 |
Anti-glioblastoma effects of nanomicelle-curcumin plus erlotinib.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Curcumin; Erlotinib Hydrochloride; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Micelles; Nanostructures | 2021 |
Experimental and clinical studies on radiation and curcumin in human glioma.
There is progressing evidence for the anti-cancer potential of the natural compound and dietary spice curcumin. Curcumin has been ascribed to be cytotoxic for various tumour cell types, to inhibit cell proliferation and to interfere with the cellular oxidant status. The compound has been notified as a therapeutic agent with radiosensitizing potential in brain tumour therapy. We considered the rationale to combine curcumin with radiation in the treatment of human glioblastoma multiforme (GBM).. Determination of clonogenic cell survival following exposure of U251 human glioma cells to single dose (1-6 Gy) and fractionated irradiation (5 daily fractions of 2 Gy) without and with curcumin. Additional literature search focused on the interaction between curcumin and radiotherapy in experimental and clinical studies on human glioma.. No interaction was found on the survival of U251 human glioma cells after irradiation in combination with curcumin at clinically achievable concentrations. Experimental in vitro and in vivo data together with clinical bioavailability data from the literature do not give evidence for a radiosensitizing effect of curcumin. Reported GBM intratumoural curcumin concentrations are too low to either exert an own cytotoxic effect or to synergistically interact with radiation. Novel approaches are being explored to increase the bioavailability of curcumin and to facilitate transport over the blood-brain barrier, aimed to reach therapeutic curcumin levels at the tumour site.. There is neither a biological nor clinical rationale for using curcumin as radiosensitizer in the therapy of GBM patients. Topics: Animals; Brain Neoplasms; Cell Line, Tumor; Combined Modality Therapy; Curcumin; Dose Fractionation, Radiation; Glioblastoma; Humans; Mice; Radiation-Sensitizing Agents; Xenograft Model Antitumor Assays | 2021 |
Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells.
Curcumin, a pleiotropic signalling molecule from Curcuma longa, is reported to be effective against multiple cancers. Despite its promising effect, curcumin had failed in clinical trials due to its low aqueous solubility, stability and poor bioavailability. While several approaches are being attempted to overcome the limitations, the improved solubility observed with curcumin-derived carbon dots appeared to be a strategy worth exploring. To assess if the carbon dots possess bio-activity similar to curcumin, we synthesized carbon dots (CurCD) from curcumin and ethylenediamine. Unlike curcumin, the as-synthesized curcumin carbon dots exhibited excellent solubility, excitation-dependent emission and photostability. The anti-cancer activity evaluated with glioblastoma cells using the well-established in vitro models indicated its comparable/enhanced activity over curcumin. Besides, the selective affinity of CurCD to the actin filament, indicated it's prospective to serve as a marker of actin filaments. In addition, the non-toxic effects observed in normal cells and fish embryos indicated CurCD was more biocompatible than curcumin. While this work reveals the superior properties of CurCD over curcumin, it provides a new approach to explore other plant derived molecules with similar limitations like curcumin. Topics: Actins; Animals; Carbon; Curcumin; Glioblastoma; Prospective Studies | 2021 |
Development of curcumin-loaded zein nanoparticles for transport across the blood-brain barrier and inhibition of glioblastoma cell growth.
Glioblastoma (GBM) is a devastating primary brain tumor resistant to conventional therapies. A major obstacle to GBM treatment is the blood-brain barrier (BBB), or blood-glioma barrier, which prevents the transport of systemically administered (chemotherapeutic) drugs into the tumor. This study reports the design of dodecamer peptide (G23)-functionalized polydopamine (pD)-coated curcumin-loaded zein nanoparticles (CUR-ZpD-G23 NPs) that efficiently traversed the BBB, and delivered curcumin to glioblastoma cells. The NPs enhanced the cellular uptake of curcumin by C6 glioma cells compared to free curcumin, and showed high penetration into 3D tumor spheroids. Functionalization of the NPs with G23 stimulated BBB crossing and tumor spheroid penetration. Moreover, the NPs markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of C6 glioma cell growth. Fluorescence microscopy and flow cytometry studies showed that the CUR-ZpD-G23 NPs increased cellular ROS production and induced apoptosis of C6 glioma cells. Following Topics: Animals; Blood-Brain Barrier; Cell Line, Tumor; Cell Proliferation; Curcumin; Drug Delivery Systems; Glioblastoma; Nanoparticles; Zebrafish; Zein | 2021 |
Miktoarm Star Polymers with Environment-Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly.
Branched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions. Soft nanoparticles from aqueous self-assembly of these stimuli responsive miktoarm stars have low critical micelle concentrations and high drug loading efficiencies. Partial corona shedding upon response to ROS is accompanied by an increase in drug release, without significant changes to overall micelle morphology. The location of the GSH responsive unit at the core leads to micelle disassembly and complete drug release. Curcumin loaded soft nanoparticles show higher efficiencies in preventing ROS generation in extracellular and cellular environments, and in ROS scavenging in human glioblastoma cells. The ease in synthetic elaboration and an understanding of structure-property relationships in stimuli responsive nanoparticles offer a facile venue for well-controlled drug delivery, based on the extra- and intracellular concentrations of ROS and GSH. Topics: Cell Line, Tumor; Curcumin; Drug Liberation; Glioblastoma; Glutathione; Humans; Micelles; Polyesters; Polymers; Proton Magnetic Resonance Spectroscopy; Reactive Oxygen Species | 2021 |
Study on the Inhibitory Effect of Curcumin on GBM and Its Potential Mechanism.
Glioblastoma (GBM) is the most prevalent malignant tumor of the central nervous system (CNS). However, current GBM treatments are ineffective, signifying the great importance of exploring new therapeutic targets. Curcumin has been found to be a natural compound with an anticancer potential. However, its targets and mechanisms in GBM are still unclear.. Differentially expressed genes (DEGs) were screened from the GBM dataset in the GEO database and intersected with the target genes of curcumin to select potential target genes. Subsequently, survival analysis was performed with the GEPIA database to confirm the effect of target genes on the prognosis of GBM, and functional enrichment analysis was performed using the DAVID database. In vitro, CCK-8 assay was used to screen the appropriate concentration of curcumin; scratch and transwell invasion assays were used to evaluate the effect of curcumin on the migration and invasion abilities of GBM cells. Furthermore, RT-qPCR and Western blotting were used to detect changes in target genes and flow cytometry was used to assess the apoptosis level.. A total of 16 target genes of curcumin and GBM were obtained, among which Topics: Antineoplastic Agents; Apoptosis; Biomarkers, Tumor; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Curcumin; DNA-Binding Proteins; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Neoplasm Invasiveness; Phosphopyruvate Hydratase; Tumor Suppressor Proteins | 2021 |
AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis.
Drug resistance is the main obstacle in the improvement of chemotherapeutic efficacy in glioblastoma. Previously, we showed that dehydroepiandrosterone (DHEA), one kind of androgen/neurosteroid, potentiates glioblastoma to acquire resistance through attenuating DNA damage. Androgen receptor (AR) activated by DHEA or other types of androgen was reported to promote drug resistance in prostate cancer. However, in DHEA-enriched microenvironment, the role of AR in acquiring resistance of glioblastoma remains unknown. In this study, we found that AR expression is significantly correlated with poor prognosis, and AR obviously induced the resistance to temozolomide (TMZ) treatment. Herein, we observed that ALZ003, a curcumin analog, induces FBXL2-mediated AR ubiquitination, leading to degradation. Importantly, ALZ003 significantly inhibited the survival of TMZ-sensitive and -resistant glioblastoma in vitro and in vivo. The accumulation of reactive oxygen species (ROS), lipid peroxidation and suppression of glutathione peroxidase (GPX) 4, which are characteristics of ferroptosis, were observed in glioblastoma cell after treatment of ALZ003. Furthermore, overexpression of AR prevented ferroptosis in the presence of GPX4. To evaluate the therapeutic effect in vivo, we transplanted TMZ-sensitive or -resistant U87MG cells into mouse brain followed by intravenous administration with ALZ003. In addition to inhibiting the growth of glioblastoma, ALZ003 significantly extended the survival period of transplanted mice, and significantly decreased AR expression in the tumor area. Taken together, AR potentiates TMZ resistance for glioblastoma, and ALZ003-mediated AR ubiquitination might open a new insight into therapeutic strategy for TMZ resistant glioblastoma. Topics: Animals; Brain Neoplasms; Cell Proliferation; Curcumin; Drug Resistance, Neoplasm; F-Box Proteins; Glioblastoma; Humans; Male; Mice; Phospholipid Hydroperoxide Glutathione Peroxidase; Primary Cell Culture; Proteolysis; Receptors, Androgen; Tumor Cells, Cultured; Tumor Microenvironment; Ubiquitination; Xenograft Model Antitumor Assays | 2020 |
Curcumin-induced cell death depends on the level of autophagic flux in A172 and U87MG human glioblastoma cells.
Glioblastoma is the deadliest neoplasm with the worst 5-year survival rate among all human cancers. Autophagy promotes autophagic cell death or blocks the induction of apoptosis in eukaryotic cells. Here, we investigated whether varying levels of autophagic flux in glioblastoma lead to different efficacies of curcumin treatment using U87MG and A172 human glioblastoma cells. The number of LC3 puncta, the number of cells with LC3 puncta and the level of LC3 II, Atg5 and Atg7 protein were higher in U87MG cells compared with A172 cells. When the cells were incubated with curcumin for 24 or 48 h, the percentage of cell death was higher in A172 cells compared with U87MG cells. Although the level of LC3 was lower, that of curcumin-induced LC3 was higher, in A172 cells than in U87MG cells. The relative increases in cell death and LC3-mediated autophagy were greater under serum starvation in A172 cells compared with U87MG cells. Curcumin-induced A172 cell death was reduced by serum starvation. When both types of cells were transfected with LC3-GFP, the percentage of cell death was higher in A172 cells than that in U87MG cells. Taken together, the data demonstrate that curcumin-mediated tumor cell death is regulated by the basal level of autophagic flux in different glioblastoma cells. This suggests that prior to the use of various curcumin therapeutics, the level of basal or induced autophagic flux should be carefully examined in tumor cells for the best efficacy. Topics: Antineoplastic Agents; Apoptosis; Autophagy; Cell Death; Cell Line, Tumor; Curcumin; Glioblastoma; Humans | 2020 |
Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: an In Vitro Study.
Using a novel curcumin-loaded niosome nanoparticle (CM-NP), the present study was designed to evaluate the effect of curcumin on human glioblastoma stem-like cells (GSCs). CM-NP has a diameter of ~ 60 nm and a zeta potential of ~ - 35 mV with a constant physicochemical stability. The cytotoxic effects of free curcumin (CM) and CM-NP were investigated on GSCs obtained during the removal of a brain tumor. Both CM and CM-NP caused a dose-dependent decrease in cell proliferation and viability of GSCs. The IC50 values of CM and CM-NP on GSCs were 50 and 137 μg/ml after 24 h, respectively. CM-NP exerted significantly higher effects on GSC viability, apoptosis, cell cycle arrest, and the expression of Bax, a pro-apoptotic marker, compared with CM. In addition, the migration of GSCs was significantly impaired following the administration of CM-NP compared with CM. Furthermore, CM-NP significantly increased the values of reactive oxygen species and decreased the mRNA expressions of NF-κB and IL-6 of GSCs compared with CM. Our data also revealed that CM-NP could significantly reduce the invasiveness of GSCs compared with CM, possibly via MCP-1-mediated pathways. In addition, CM-NP exhibited a significantly greater inhibitory effect on colony formation of GSCs compared with CM. These data indicate that CM-NP exhibited stronger anti-tumor effects on GSCs than CM. Although further in vivo investigations are warranted, our results suggest that CM-NP could be an ideal carrier to deliver curcumin for potential therapeutic approaches into glioblastoma. Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Curcumin; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Male; Reactive Oxygen Species | 2020 |
Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression.
Glioblastoma (GB) is the most common neoplasm in the brain. Curcumin, as a known polyphenolic compound extracted from turmeric, is a chemotherapy used in some cancer treatments in China. However, the effect of curcumin on the survivability of GB cells remains to be elucidated.. We performed a CCK8 assay to detect the viability of GB cells following treatments with curcumin and examined the migration and invasion the ability of these cells using the wound-healing and transwell invasion assays. The cell proliferation and apoptotic proteins were detected by Western blot analyses. We utilized a glioblastoma-xenograft mouse model to assess cell proliferation following curcumin treatment.. We found that curcumin inhibited the proliferation, migration, and invasion of U251 and U87 GB cells. We detected that curcumin decreased p-AKT and p-mTOR protein expression, and promoted the apoptosis of U251 and U87 GB cells. Further, we found that curcumin promoted the PTEN and p53 expression, as the tumor suppressor genes. In addition, we administered curcumin to nude mice and found that curcumin decreased the tumor volume, caused necrosis of tumor tissue, and significantly enhanced the PTEN and p53 expression in vivo.. These results indicated that curcumin inhibited proliferation by decreasing the p-AKT/p-mTOR pathway and promoted apoptosis by increasing the PTEN and p53 expression. Our study provided the molecular mechanisms by which curcumin inhibited glioblastoma and its targeted interventions. Topics: Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Curcumin; Female; Glioblastoma; Humans; Mice; Mice, Nude; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Signal Transduction; TOR Serine-Threonine Kinases | 2020 |
Combination Therapy with Nanomicellar-Curcumin and Temozolomide for In Vitro Therapy of Glioblastoma Multiforme via Wnt Signaling Pathways.
Glioblastoma (GBM) is the most serious brain tumor and shows a high rate of drug resistance. Wnt signaling is a very important pathway in GBM that can activate/inhibit other pathways, such as apoptosis and autophagy. In this study, we evaluated the efficacy of a combination of temozolomide (TMZ) plus curcumin or nanomicellar-curcumin on the inhibition of GBM growth in vitro, via effects on autophagy, apoptosis, and the Wnt signaling pathway. Two concentrations of curcumin and nanomicellar-curcumin (i.e., 20 μM and 50 μM) alone, and in combination with TMZ (50 μM) were used to induce cytotoxicity in the U87 GBM cell line. Wnt signaling-, autophagy-, and apoptosis-related genes were assessed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blots. All treatments (except 20 μM curcumin alone) significantly decreased the viability of U87 cells compared to controls. Curcumin (50 μM), nanomicellar-curcumin alone and in combination with TMZ significantly decreased the invasion and migration of U87 cells. Autophagy-related proteins (Beclin 1, LC3-I, LC3-II) were significantly increased. Apoptosis-related proteins (Bcl-2 and caspase 8) were also significantly increased, while Bax protein was significantly decreased. The expression levels of Wnt pathway-associated genes (β-catenin, cyclin D1, Twist, and ZEB1) were significantly reduced. Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Proliferation; Curcumin; Drug Synergism; Glioblastoma; Humans; Temozolomide; Wnt Signaling Pathway | 2020 |
Overexpression of Tripartite Motif-Containing 48 (TRIM48) Inhibits Growth of Human Glioblastoma Cells by Suppressing Extracellular Signal Regulated Kinase 1/2 (ERK1/2) Pathway.
BACKGROUND Herein, we found that tripartite motif-containing 48 (TRIM48) was reduced in human glioblastoma (GBM) cell lines. We investigated whether and how TRIM48 functions in human GBM in vitro. MATERIAL AND METHODS Human GBM cells (U87 MG and U138 MG) were infected with lentivirus to overexpress TRIM48, and 1 human GBM cell line (T98G) was infected with siRNAs to knock down TRIM48 expression. Techniques used included cell proliferation assay, measured by CCK-8 and BrdU-ELISA method, and cell cycle assay, determined using flow cytometry. Curcumin, a specific activator of extracellular signal regulated kinases (ERK1/2), or PD98059, a specific inhibitor of ERK1/2, was used to activate or block the ERK1/2 pathway, respectively. Expression of phosphorylated (p)-ERK1/2, and its downstream targets (Cyclin D1) were measured to assess the mechanism. RESULTS Our data suggest that overexpression of TRIM48 reduces the viability of U87 MG and U138 MG and leads to cell cycle arrest (in G0-G1 phase), which is associated with blockade of the ERK1/2 pathway and reduction of Cyclin D1. In contrast, knockdown of TRIM48 resulted in the opposite effects. Interestingly, the inhibitory effect of TRIM48 overexpression on human GBM cell growth and the inactivation of ERK1/2 were significantly alleviated with additional curcumin treatment, while it the promoted the effect of siTRIM48 on human GBM cell growth, and the activation of ERK1/2 was significantly alleviated with additional PD98059 treatment. CONCLUSIONS TRIM48 suppressed the growth of human GBM cell via the prevention of ERK1/2 activation. Topics: Carrier Proteins; Cell Cycle; Cell Cycle Checkpoints; Cell Division; Cell Line, Tumor; Cell Proliferation; Curcumin; Extracellular Signal-Regulated MAP Kinases; Flavonoids; Glioblastoma; Humans; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 3 | 2019 |
Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments.
The treatment of glioblastoma is challenging for the clinician, due to its chemotherapeutic resistance. Recent findings suggest that targeting glioblastoma using anti-cancer natural polyphenols is a promising strategy. In this context, curcumin and berberine have been shown to have potent anti-cancer and anti-inflammatory effects against several malignancies. Due to the poor solubility and limited bioavailability, these compounds have limited efficacy for treating cancer. However, use of a formulation of curcumin with higher bioavailability or combining it with berberine as a co-treatment may be proving to be more efficacious against cancer. Recently, we demonstrated that solid lipid curcumin particles (SLCPs) provided more bioavailability and anti-cancer effects in cultured glioblastoma cells than did natural curcumin. Interestingly, a combination of curcumin and berberine has proven to be more effective in inhibiting growth and proliferation of cancer in the liver, breast, lung, bone and blood. However, the effect of combining these drugs for treating glioblastoma, especially with respect to its effect on activating the PI3K/Akt/mTOR pathways has not been studied. Therefore, we decided to assess the co-treatment effects of these drugs on two different glioblastoma cell lines (U-87MG and U-251MG) and neuroblastoma cell lines (SH-SY5Y) derived from human tissue. In this study, we compared single and combination (1:5) treatment of SLCP (20 μM) and berberine (100 μM) on measures of cell viability, cell death markers, levels of c-Myc and p53, along with biomarkers of the PI3K/Akt/mTOR pathways after 24-48 h of incubation. We found that co-treatment of SLCP and berberine produced more glioblastoma cell death, more DNA fragmentation, and significantly decreased ATP levels and reduced mitochondrial membrane potential than did single treatments in both glioblastoma cells lines. In addition, we observed that co-treatment inhibited the PI3K/Akt/mTOR pathway more efficiently than their single treatments. Our study suggests that combination treatments of SLCP and berberine may be a promising strategy to reduce or prevent glioblastoma growth in comparison to individual treatments using either compound. Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Berberine; Biological Availability; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Curcumin; Drug Carriers; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Glioblastoma; Humans; Lipids; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; TOR Serine-Threonine Kinases | 2019 |
Effect of curcumin on glioblastoma cells.
Curcumin is a polyphenolic compound derived from Curcumin longa L. There are growing bodies of evidence revealing the antitumor effect of curcumin in different tumors; although the molecular mechanism behind this inhibition in glioblastoma multiform (GBM) still remains unclear. Here we investigated the antitumor activity of nano micelles curcumin compared with erlotinib in U-373 cells in monolayer cell cultures and spheroids models. Furthermore, we characterized affecting cell cycle perturbation, as well as apoptosis induction in GBM cells. The antiproliferative activity of nano micelles curcumin and erlotinib were assessed in monolayer and spheroid models. The influence of the cell cycle and expression levels of nuclear factor κB (NF-κB) and Wnt/β-catenin pathway was checked. Nano micelles curcumin suppressed cell growth in U-373 cells via modulation of Wnt and NF-κB pathways. Moreover, cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation posttreatment with nano micelles curcumin and erlotinib. In the core signaling pathways of GBM, nano micelles curcumin either significantly influences the NF-κB pathway by decreasing p-65 expression or significantly inhibits the Wnt/β-catenin pathway by declining cyclin D1 expression. In conclusion, we have shown that nano micelles curcumin effectively prevent proliferation, and invasion of GBM cells through perturbation of Wnt/β-catenin and NF-κB pathways, suggesting further investigations on the therapeutic application of this novel anticancer drug in in vivo models. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Curcumin; Glioblastoma; Humans; NF-kappa B; Wnt Signaling Pathway | 2019 |
Curcumin and Solid Lipid Curcumin Particles Induce Autophagy, but Inhibit Mitophagy and the PI3K-Akt/mTOR Pathway in Cultured Glioblastoma Cells.
Autophagy and the (PI3K-Akt/mTOR) signaling pathway play significant roles in glioblastoma multiforme (GBM) cell death and survival. Curcumin (Cur) has been reported to prevent several cancers, including GBM. However, the poor solubility and limited bioavailability of natural Cur limits its application in preventing GBM growth. Previously, we have shown the greater apoptotic and anti-carcinogenic effects of solid lipid Cur particles (SLCP) than natural Cur in cultured GBM cells. Here, we compared the autophagic responses on cultured U-87MG, GL261, F98, C6-glioma, and N2a cells after treatment with Cur or SLCP (25 µM for 24 h). Different autophagy, mitophagy, and chaperone-mediated autophagy (CMA) markers, along with the PI3K-AKkt/mTOR signaling pathway, and the number of autophagy vacuoles were investigated after treatment with Cur and or SLCP. We observed increased levels of autophagy and decreased levels of mitophagy markers, along with inhibition of the PI3K-Akt/mTOR pathway after treatments with Cur or SLCP. Cell survival markers were downregulated, and cell death markers were upregulated after these treatments. We found greater effects in the case of SCLP-treated cells in comparison to Cur. Given that fewer effects were observed on C-6 glioma and N2a cells. Our results suggest that SLCP could be a safe and effective means of therapeutically modulating autophagy in GBM cells. Topics: Animals; Autophagy; Cell Line, Tumor; Cell Survival; Curcumin; Environmental Biomarkers; Glioblastoma; Humans; Lipids; Mice; Mitophagy; Nanoparticles; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; TOR Serine-Threonine Kinases | 2019 |
Curcumin Promotes Connexin 43 Degradation and Temozolomide-Induced Apoptosis in Glioblastoma Cells.
Glioblastoma (GBM) is the most commonly occurring tumor in the cerebral hemispheres. Currently, temozolomide (TMZ), an alkylating agent that induces DNA strand breaks, is considered the frontline chemotherapeutic agent for GBM. Despite its frontline status, GBM patients commonly exhibit resistance to TMZ treatment. We have recently established and characterized TMZ-resistant human glioma cells. The aim of this study is to investigate whether curcumin modulates cell apoptosis through the alternation of the connexin 43 (Cx43) protein level in TMZ-resistant GBM. Overexpression of Cx43, but not ATP-binding cassette transporters (ABC transporters), was observed (approximately 2.2-fold) in TMZ-resistant GBM cells compared to the Cx43 levels in parental GBM cells. Furthermore, at a concentration of 10 Topics: Antineoplastic Agents, Alkylating; Apoptosis; Connexin 43; Curcumin; Glioblastoma; Humans; Proteolysis; Stimulation, Chemical; Temozolomide; Tumor Cells, Cultured | 2019 |
Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry.
An amorphous solid dispersion (SD) of curcumin (Cur) with disodium glycyrrhizin (Na Topics: Animals; Biological Availability; Calorimetry, Differential Scanning; Cell Line, Tumor; Chemistry, Pharmaceutical; Curcumin; Drug Carriers; Glioblastoma; Glycyrrhizic Acid; Humans; Male; MCF-7 Cells; Micelles; Particle Size; Permeability; Rats; Rats, Sprague-Dawley; Water; X-Ray Diffraction | 2018 |
A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model.
A glioblastoma is a common primary brain tumor that expresses microRNA-21 (miR-21), which inhibits the expression of pro-apoptotic genes such as phosphatase and tensin homologue (PTEN) and programmed cell death 4 (PDCD4). Therefore, an antisense-oligonucleotide against miR-21 (miR21ASO) could have therapeutic effects for glioblastomas. In this study, curcumin was loaded into deoxycholic acid-conjugated polyethylenimine (DP) micelles. The curcumin-loaded DP micelle (DP-Cur) was evaluated as a carrier for the combined delivery of curcumin and miR21ASO. Gel retardation and heparin competition assays showed that DP-Cur formed stable complexes with miR21ASO. The anti-tumor effects of the combined delivery of curcumin and miR21ASO were evaluated in C6 glioblastoma cells. In vitro transfection showed that DP-Cur had an miR21ASO delivery efficiency similar to that of polyethylenimine (25 kDa, PEI25k) and DP. In the C6 cells, the delivery of miR21ASO using DP-Cur effectively reduced the miR21 level. The miR21ASO/DP-Cur complex induced apoptosis more effectively than the single delivery of curcumin or miR21ASO. The therapeutic effect of the miR21ASO/DP-Cur complex was also evaluated in an intracranial glioblastoma animal model. The miR21ASO/DP-Cur complex reduced the tumor volume more effectively than single therapy of curcumin or miR21ASO. Immunohistochemistry showed that PDCD4 and PTEN were induced in the miR21ASO/DP and miR21ASO/DP-Cur complex groups. Therefore, DP-Cur is an efficient carrier of miR21ASO and the combined delivery of miR21ASO and curcumin may be useful in the development of combination therapy for glioblastoma. Topics: Animals; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Curcumin; Gene Transfer Techniques; Glioblastoma; Humans; Male; Micelles; MicroRNAs; Oligonucleotides, Antisense; Polyethyleneimine; Rats; Rats, Sprague-Dawley; RNAi Therapeutics | 2018 |
Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells.
Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM): 32:8:100 (termed 32 μM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors. Topics: Animals; Biomarkers, Tumor; Catechin; Cell Line, Tumor; Curcumin; Disease Models, Animal; Drug Combinations; Drug Synergism; Glioblastoma; Humans; Immunophenotyping; Killer Cells, Natural; Liposomes; Lymphocytes, Tumor-Infiltrating; Macrophages; Mice; Microglia; Neoplastic Stem Cells; Resveratrol; Stilbenes; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2018 |
Paraptosis in human glioblastoma cell line induced by curcumin.
Curcumin is a polyphenol compound extracted from Curcuma longa plant, is a molecule with pleiotropic effects that suppresses transformation, proliferation and metastasis of malignant tumors. Curcumin can cause different kinds of cell death depending of its concentration on the exposed cell type. Here we show that exposure of the glioblastoma cell line A172 to curcumin at 50 μM, the IC50, causes morphological change characteristic of paraptosis cell-death. Vesicles derived from the endoplasmic reticulum (ER) and low membrane potential of the mitochondria were constantly found in the exposed cells. Furthermore, changes in expression of the ER Stress Response (ERSR) genes IRE1 and ATF6, and the microRNAs (miRNAs) miR-27a, miR-222, miR-449 was observed after exposure to curcumin. AKT-Insulin and p53-BCL2 networks were predicted being modulated by the affected miRNAs. Furthermore, AKT protein levels reduction was confirmed. Our data, strongly suggest that curcumin exerts its cell-death properties by affecting the integrity of the reticulum, leading to paraptosis in the glioblastoma cells. These data unveils the versatility of curcumin to control cancer progression. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Curcumin; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Glioblastoma; Humans; Membrane Potential, Mitochondrial; MicroRNAs; Mitochondria; Proto-Oncogene Proteins c-akt | 2018 |
Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma.
Localized chemotherapy has gained significant impetus for the management of malignant brain tumors. In the present study, we appraised the versatility of an in-situ gel forming self-assembling peptide, ac-(RADA). The morphology and mechanical properties of ac-(RADA). SEM studies revealed that the ac-(RADA). The current findings highlight the potential utility of the in-situ depot forming ac-(RADA) Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Curcumin; Doxorubicin; Drug Carriers; Drug Liberation; Glioblastoma; Humans; Hydrogels; Nanofibers; Peptides | 2018 |
Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line.
Topics: Antineoplastic Agents, Immunological; Cell Line, Tumor; Cell Survival; Curcumin; Drug Delivery Systems; Drug Liberation; ErbB Receptors; Fluorescein-5-isothiocyanate; Glioblastoma; Humans; Nanoparticles; Particle Size; Photochemotherapy; Photosensitizing Agents; Polylactic Acid-Polyglycolic Acid Copolymer | 2018 |
Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells.
Glioblastoma (GBM) is a primary brain tumor with a 5-year survival rate of ≤5%. We have shown earlier that GBM-antibody-linked curcumin (CC) and also phytosomal curcumin (CCP) rescue 50-60% of GBM-bearing mice while repolarizing the tumor-associated microglia/macrophages (TAM) from the tumor-promoting M2-type to the tumoricidal M1-type. However, systemic application of CCP yields only sub-IC50 concentrations of CC in the plasma, which is unlikely to kill GBM cells directly. This study investigates the role of CC-evoked intra-GBM recruitment of activated natural killer (NK) cells in the elimination of GBM and GBM stem cells.. We have used an immune-competent syngeneic C57BL6 mouse model with the mouse-GBM GL261 cells orthotopically implanted in the brain. Using immunohistochemistry and flow cytometry, we have quantitatively analyzed the role of the intra-GBM-recruited NK cells by (i) injecting (i.p.) the NK1.1 antibody (NK1.1Ab) to temporarily eliminate the NK cells and (ii) blocking NK recruitment by injecting an IL12 antibody (IL12Ab). The treatment cohorts used randomly-chosen GL261-implanted mice and data sets were compared using two-tailed t-test or ANOVA.. CCP treatment caused the GBM tumor to acquire M1-type macrophages (50-60% of the TAM) and activated NK cells. The treatment also elicited (a) suppression of the M2-linked tumor-promoting proteins STAT3, ARG1, and IL10, (b) induction of the M1-linked anti-tumor proteins STAT1 and inducible nitric oxide synthase in the TAM, (c) elimination of CD133(+) GBM stem cells, and (d) activation of caspase3 in the GBM cells. Eliminating intra-GBM NK cell recruitment caused a partial reversal of each of these effects. Concomitantly, we observed a CCP-evoked dramatic induction of the chemokine monocyte chemotactic protein-1 (MCP-1) in the TAM.. The recruited NK cells mediate a major part of the CCP-evoked elimination of GBM and GBM stem cells and stabilization of the TAM in the M1-like state. MCP-1 is known to activate peripheral M1-type macrophages to secrete IL12, an activator of NK cells. Based on such observations, we postulate that by binding to peripheral M1-type macrophages and IL12-activated NK cells, the brain-released chemokine MCP-1 causes recruitment of peripheral immune cells into the GBM, thereby causing destruction of the GBM cells and GBM stem cells. Topics: Animals; Brain Neoplasms; Curcumin; Glioblastoma; Killer Cells, Natural; Macrophages; Male; Mice; Mice, Inbred C57BL; Microglia; Neoplastic Stem Cells; Random Allocation | 2018 |
MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway.
Glioblastoma multiforme is the most malignant and common brain tumor in adults and is characterized by poor survival and high resistance to chemotherapy and radiotherapy. Among the new chemotherapy drugs, curcumin, a popular dietary supplement, has proven to have a potent anticancer effect on a variety of cancer cell types; however, it remains difficult to achieve a satisfactory therapeutic effect with curcumin using the traditional single-drug treatment. In this study, we found that expression of miR-326, a tumor suppressor microRNA in various tumor types, resulted in a marked increase of curcumin-induced cytotoxicity and apoptosis and a decrease of proliferation and migration in glioma cells. Moreover, we found that combination treatment of miR-326 and curcumin caused significant inhibition of the SHH/GLI1 pathway in glioma cells compared with either treatment alone, independent of p53 status. Furthermore, in vivo, the curcumin-induced increase in miR-326 expression altered the anti-glioma mechanism of this combination treatment, which further reduced tumor volume and prolonged the survival period compared to either treatment alone. Taken together, our data strongly support an important role for miR-326 in enhancing the chemosensitivity of glioma cells to curcumin. Topics: Adult; Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Curcumin; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Glioblastoma; Hedgehog Proteins; Humans; MicroRNAs; Signal Transduction; Zinc Finger Protein GLI1 | 2018 |
ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin.
We analyzed the role of ABCG2, a drug transporter, in determining the sensitivity of glioma stem cells (GSCs) to demethoxycurcumin (DMC). We first demonstrated that ABCG2 is more highly expressed in GSCs than primary astrocytes. Modulation of ABCG2 levels in GSCs by transfection of ABCG2 shRNA or a lentiviral vector encoding ABCG2 revealed an inverse relation between ABCG2 levels and DMC-induced GSC growth inhibition. Suppressing ABCG2 increased DMC-induced apoptosis and G0/G1 cell cycle arrest in GSCs. It also increased levels reactive oxygen species (ROS) in GSCs treated with DMC, resulting in increased cytochrome C and caspase-3 activity. When GSCs transfected with ABCG2 shRNA or overexpressing ABCG2 were xenografted and the tumor-bearing, immunodeficient mice were treated with DMC, ABCG2 expression suppressed the tumor proliferation rate (T/C %). These findings demonstrate that ABCG2 expression is critical for DMC resistance in GSCs and is a potential therapeutic target for GBM. Topics: Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Cell Line, Tumor; Cell Proliferation; Curcumin; Diarylheptanoids; Down-Regulation; Drug Resistance, Neoplasm; Glioblastoma; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Proteins; Neoplastic Stem Cells; Random Allocation; Reactive Oxygen Species; Transfection; Xenograft Model Antitumor Assays | 2017 |
Deciphering molecular mechanisms of arginine deiminase-based therapy - Comparative response analysis in paired human primary and recurrent glioblastomas.
Arginine auxotrophy constitutes the Achilles' heel for several tumors, among them glioblastoma multiforme (GBM). Hence, arginine-depleting enzymes such as arginine deiminase (ADI) from Streptococcus pyogenes are promising for treatment of primary and maybe even refractory GBM. Based on our previous study in which ADI-susceptibility was shown on a panel of patient-derived GBM cell lines, we here aimed at deciphering underlying molecular mechanisms of ADI-mediated growth inhibition. We found that ADI (35 mU/mL) initially induces a cellular stress-response that is characterized by upregulation of genes primarily belonging to the heat-shock protein family. In addition to autophagocytosis, we show for the first time that senescence constitutes another cellular response mechanism upon ADI-treatment and that this bacterial enzyme is able to act as radiosensitizer (¼ cases). Long-term treatment schedules revealed no resistance development, with treated cells showing morphological signs of cell stress. Next, several combination strategies were employed to optimize ADI-based treatment. Simultaneous and sequential S. pyogenes ADI-based combinations included substances acting at different molecular pathways (curcumin, resveratrol, quinacrine, and sorafenib, 2 × 72 h treatment). Adding drugs to GBM cell lines (n = 4, including a matched pair of primary and recurrent GBM in one case) accelerated and potentiated ADI-mediated cytotoxicity. Autophagy was identified as the main cause of tumor growth inhibition. Of note, residual cells again showed classical signs of senescence in most combinations. Our results suggest an alternative treatment regimen for this fatal cancer type which circumvents many of the traditional barriers. Using the metabolic defect in GBM thus warrants further (pre-) clinical evaluation. Topics: Autophagy; Bacterial Proteins; Cell Line, Tumor; Cell Survival; Cellular Senescence; Curcumin; Gamma Rays; Glioblastoma; Heat-Shock Proteins; Humans; Hydrolases; Quinacrine; Recombinant Proteins; Resveratrol; Stilbenes; Streptococcus pyogenes; Superoxide Dismutase; Up-Regulation | 2017 |
Solid Lipid Curcumin Particles Induce More DNA Fragmentation and Cell Death in Cultured Human Glioblastoma Cells than Does Natural Curcumin.
Despite recent advancements in cancer therapies, glioblastoma multiforme (GBM) remains largely incurable. Curcumin (Cur), a natural polyphenol, has potent anticancer effects against several malignancies, including metastatic brain tumors. However, its limited bioavailability reduces its efficiency for treating GBM. Recently, we have shown that solid lipid Cur particles (SLCPs) have greater bioavailability and brain tissue penetration. The present study compares the efficiency of cell death by Cur and/or SLCPs in cultured GBM cells derived from human (U-87MG) and mouse (GL261) tissues. Several cell viability and cell death assays and marker proteins (MTT assay, annexin-V staining, TUNEL staining, comet assay, DNA gel electrophoresis, and Western blot) were investigated following the treatment of Cur and/or SLCP (25 Topics: Animals; Antineoplastic Agents; Brain Neoplasms; Cell Death; Curcumin; DNA Fragmentation; Glioblastoma; Humans; Mice; Reactive Oxygen Species; Tumor Cells, Cultured | 2017 |
Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species.
Glioblastoma Multiforme (GBM) is the most common and lethal form of primary brain tumor in adults. Following standard treatment of surgery, radiation and chemotherapy, patients are expected to survive 12-14 months. Theorized cause of disease recurrence in these patients is tumor cell repopulation through the proliferation of treatment-resistant cancer stem cells. Current research has revealed curcumin, the principal ingredient in turmeric, can modulate multiple signaling pathways important for cancer stem cell self-renewal and survival.. Following resection, tumor specimens were dissociated and glioblastoma stem cells (GSCs) were propagated in neurosphere media and characterized via immunocytochemistry. Cell viability was determined with MTS assay. GSC proliferation, sphere forming and colony forming assays were conducted through standard counting methods. Reactive oxygen species (ROS) production was examined using the fluorescent molecular probe CM-H2DCFA. Effects on cell signaling pathways were elucidated by western blot.. We evaluate the effects of curcumin on patient-derived GSC lines. We demonstrate a curcumin-induced dose-dependent decrease in GSC viability with an approximate IC. Discoveries made in this investigation may lead to a non-toxic intervention designed to prevent recurrence in glioblastoma by targeting glioblastoma stem cells. Topics: Acetylcysteine; Adult; Antineoplastic Agents; Cell Proliferation; Cell Survival; Curcumin; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Free Radical Scavengers; Glioblastoma; Humans; Inhibitor of Apoptosis Proteins; Inhibitory Concentration 50; Mitogen-Activated Protein Kinases; Neoplastic Stem Cells; Oxidative Stress; Reactive Oxygen Species; STAT3 Transcription Factor; Survivin; Tumor Cells, Cultured | 2017 |
The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.
Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, Topics: Animals; Antineoplastic Agents; Apoptosis; Biological Transport; Blood-Brain Barrier; Brain; Brain Neoplasms; Cells, Cultured; Curcumin; Drug Delivery Systems; Endothelium, Vascular; Glioblastoma; In Vitro Techniques; Liposomes; Male; Mice; Mice, Inbred ICR; Neoplastic Stem Cells; Rats | 2017 |
Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells.
In the present study, Curcumin (CU)-loaded nanocarrier (NC) such as nanoemulsion (NE) was developed with the objective of increasing its cytotoxicity and bioavailability through lymphatic transport by enhancing its solubility and intestinal permeability.. Based on the area obtained in pseudoternary phase diagram, various % combination of Labrafac Lipophile WL 1349, Solutol HS 15, Transcutol HP and distilled water were selected. Formulations which passed physical stability studies were selected for further studies such as globule size, zeta potential, in vitro release, ex vivo permeation, in vitro lipolysis studies, bioavailability studies and cytotoxicity against glioblastoma cells (U-87).. The optimized NC (NE-SB1) had small average globule diameter of 67 ± 6 nm with zeta potential of -37 ± 2.5 mv which indicated long-term dispersion stability. During in vitro lipolysis study, the digestion rate of medium chain triglycerides increased with decreased globule diameter. Statistically significant difference was found in AUC0-inf of NC formulation (p < 0.05) compared to CU suspension. The relative bioavailability of NC was found 11.88 ± 0.47 with respect to CU suspension. During cytotoxicity studies, IC50 of CU solution on U87 cells was found 24.23 µM, while for the NE- SB1 it was 16.41 µM. The optimized formulation was found to be stable during 6 months of accelerated stability.. The overall results revealed that the CU-loaded NC is a very effective approach for enhancing the oral absorption of poorly water-soluble drug CU and have great potential for future clinical application. Topics: Animals; Antineoplastic Agents, Phytogenic; Biological Availability; Brain Neoplasms; Cell Line, Tumor; Chemistry, Pharmaceutical; Curcumin; Drug Carriers; Drug Stability; Glioblastoma; Humans; Intestinal Absorption; Lipolysis; Nanoparticles; Particle Size; Rats; Rats, Wistar; Triglycerides | 2016 |
Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma.
Increased lipid droplet number and fatty acid synthesis allow glioblastoma multiforme, the most common and aggressive type of brain cancer, to withstand accelerated metabolic rates and resist therapeutic treatments. Lipid droplets are postulated to sequester hydrophobic therapeutic agents, thereby reducing drug effectiveness. We hypothesized that the inhibition of lipid droplet accumulation in glioblastoma cells using pyrrolidine-2, a cytoplasmic phospholipase A2 alpha inhibitor, can sensitize cancer cells to the killing effect of curcumin, a promising anticancer agent isolated from the turmeric spice. We observed that curcumin localized in the lipid droplets of human U251N glioblastoma cells. Reduction of lipid droplet number using pyrrolidine-2 drastically enhanced the therapeutic effect of curcumin in both 2D and 3D glioblastoma cell models. The mode of cell death involved was found to be mediated by caspase-3. Comparatively, the current clinical chemotherapeutic standard, temozolomide, was significantly less effective in inducing glioblastoma cell death. Together, our results suggest that the inhibition of lipid droplet accumulation is an effective way to enhance the chemotherapeutic effect of curcumin against glioblastoma multiforme. Topics: Amino Acid Sequence; Cell Line, Tumor; Cell Survival; Curcumin; Dose-Response Relationship, Drug; Glioblastoma; Humans; Lipid Droplets; Molecular Sequence Data; Treatment Outcome | 2016 |
The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo.
C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma. Topics: Acrylamides; Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Curcumin; Drosophila melanogaster; Drug Screening Assays, Antitumor; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Inhibitory Concentration 50; Melanoma, Experimental; Mice; Neoplasm Transplantation; NF-kappa B; Proto-Oncogene Proteins c-akt; Rats; Rats, Nude; Receptors, Notch; Signal Transduction; Transcription, Genetic; Unfolded Protein Response | 2016 |
Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma.
Glioblastoma (GBM) is one of the most pernicious forms of cancer and currently chances of survival from this malady are extremely low. We have used the noninvasive strategy of intranasal (IN) delivery of a glioblastoma-directed adduct of curcumin (CC), CC-CD68Ab, into the brain of mouse GBM GL261-implanted mice to study the effect of CC on tumor remission and on the phenotype of the tumor-associated microglial cells (TAMs). The treatment caused tumor remission in 50% of GL261-implanted GBM mice. A similar rescue rate was also achieved through intraperitoneal infusion of a lipid-encapsulated formulation of CC, Curcumin Phytosome, into the GL261-implanted GBM mice. Most strikingly, both forms of CC elicited a dramatic change in the tumor-associated Iba1+ TAMs, suppressing the tumor-promoting Arginase1 Topics: Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antineoplastic Agents; Arginase; Biomarkers; Calcium-Binding Proteins; Cell Line, Tumor; Curcumin; Disease Models, Animal; DNA-Binding Proteins; Glioblastoma; Humans; Immunophenotyping; Inhibitory Concentration 50; Male; Mice; Microfilament Proteins; Microglia; NF-kappa B; Nitric Oxide Synthase Type II; STAT1 Transcription Factor; Xenograft Model Antitumor Assays | 2016 |
Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models.
NF-κB is strongly associated with poor prognosis of different cancer types and an important factor responsible for the malignant phenotype of glioblastoma. Overcoming chemotherapy-induced resistance caused by activation of PI3K/Akt and NF-κB pathways is crucial for successful glioblastoma therapy. We developed an all-in-one nanomedicine formulation for co-delivery of a chemotherapeutic agent (topoisomerase II inhibitor, doxorubicin) and a multidrug resistance modulator (NF-κB inhibitor, curcumin) for treatment of glioblastoma due to their synergism. Both agents were incorporated into PEG-PE-based polymeric micelles. The glucose transporter-1 (GLUT1) is overexpressed in many tumors including glioblastoma. The micellar system was decorated with GLUT1 antibody single chain fragment variable (scFv) as the ligand to promote blood brain barrier transport and glioblastoma targeting. The combination treatment was synergistic (combination index, CI of 0.73) against U87MG glioblastoma cells. This synergism was improved by micellar encapsulation (CI: 0.63) and further so with GLUT1 targeting (CI: 0.46). Compared to non-targeted micelles, GLUT1 scFv surface modification increased the association of micelles (>20%, P<0.01) and the nuclear localization of doxorubicin (∼3-fold) in U87MGcells, which also translated into enhanced cytotoxicity. The increased caspase 3/7 activation by targeted micelles indicates successful apoptosis enhancement by combinatory treatment. Moreover, GLUT1 targeted micelles resulted in deeper penetration into the 3D spheroid model. The increased efficacy of combination nanoformulations on the spheroids compared to a single agent loaded, or to non-targeted formulations, reinforces the rationale for selection of this combination and successful utilization of GLUT1 scFv as a targeting agent for glioblastoma treatment. Topics: Antineoplastic Agents; Biotinylation; Blood-Brain Barrier; Cell Line, Tumor; Curcumin; Doxorubicin; Drug Carriers; Drug Delivery Systems; Drug Evaluation, Preclinical; Drug Resistance, Neoplasm; Flow Cytometry; Glioblastoma; Glucose Transporter Type 1; Humans; Ligands; Micelles; Nanomedicine; Neoplasms; NF-kappa B; Phenotype; Polymers; Prognosis; Single-Chain Antibodies; Spheroids, Cellular | 2016 |
Progranulin promotes Temozolomide resistance of glioblastoma by orchestrating DNA repair and tumor stemness.
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults with a dismal prognosis. Current therapy of surgical removal combined with Temozolomide (TMZ) and radiation therapy only slightly prolongs the survival of GBM patients. Thus, it is essential to elucidate mechanism underlying its highly malignant properties in order to develop efficacious therapeutic regimens. In this study, we showed that progranulin (PGRN) was overexpressed in most GBM cell lines and the majority of human tumor samples. PGRN overexpression conferred GBM cells with tumorigenic properties and TMZ resistance by upregulating DNA repair (PARP, ATM, BRCA1, Rad51, XRCC1 and so on) and cancer stemness (CD133, CD44, ABCG2) genes, in part via an AP-1 transcription factor, specifically cFos/JunB. Curcumin, an AP-1 inhibitor, was also found to regulate PGRN promoter activity and expression including its downstream effectors aforementioned. These data suggested a feedforward loop between PGRN signaling and AP-1. PGRN depletion significantly decreased unlimited self-renewal and multilineage differentiation and the malignant properties of GBMs cells S1R1, and enhanced their vulnerability to TMZ. In addition, S1R1 depleted of PGRN also lost the ability to form tumor in an orthotopic xenograft mouse model. In conclusion, PGRN had a critical role in the pathogenesis and chemoresistance of GBM and functioned at the top of the hierarchy of cellular machinery that modulates both DNA repair pathways and cancer stemness. Our data suggest that a new strategy combining current regimens with compounds targeting PGRN/AP-1 loop like curcumin may significantly improve the therapeutic outcome of GBM. Topics: Adult; Aged; Animals; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Cell Movement; Cell Proliferation; Curcumin; Dacarbazine; DNA Damage; DNA Repair; Drug Resistance, Neoplasm; Female; Glioblastoma; Humans; Intercellular Signaling Peptides and Proteins; Male; Mice; Mice, Inbred NOD; Mice, SCID; Middle Aged; Neoplastic Stem Cells; Progranulins; Promoter Regions, Genetic; Proto-Oncogene Proteins c-fos; RNA Interference; RNA, Small Interfering; Temozolomide; Transcription Factor AP-1; Transcription Factors; Tumor Cells, Cultured | 2015 |
Thymidine kinase gene delivery using curcumin loaded peptide micelles as a combination therapy for glioblastoma.
The effect of the combination therapy of curcumin and the herpes simplex virus thymidine kinase (HSVtk) gene using R7L10 as a carrier was evaluated in a glioblastoma animal model.. Curcumin was loaded into the cores of R7L10 peptide micelles using an oil-in-water emulsion/solvent evaporation method to generate curcumin loaded R7L10 micelles (R7L10-Cur), which were used as a carrier to deliver the HSVtk gene. The plasmid DNA (pDNA)/R7L10-Cur complex was confirmed by gel retardation, heparin competition, and dynamic light scattering analyses. Transfection efficiency and cytotoxicity were measured using luciferase, MTT, and TUNEL assays. Intracellular delivery of curcumin was determined by fluorescence and absorbance. In the glioblastoma animal model, the effects of the intratumoral delivery of curcumin and the HSVtk gene were evaluated according to tumor size, immunohistochemistry, and TUNEL assays.. R7L10-Cur delivered pDNA into the cells more efficiently than PLL and R7L10. In addition, R7L10-Cur delivered curcumin into the cells more efficiently than curcumin alone. The pHSVtk/R7L10-Cur complex induced cell death efficiently both in vitro and in vivo. Likewise, the combination of curcumin and the HSVtk gene using the pHSVtk/R7L10-Cur complex reduced tumor size more efficiently than the pHSVtk/PEI and pHSVtk/R7L10 complexes in a glioblastoma animal model.. R7L10 is an efficient carrier for delivery of curcumin and the HSVtk gene, which may be a useful combination therapy for glioblastoma. Topics: Animals; Cell Line, Tumor; Cell Survival; Combined Modality Therapy; Curcumin; Gene Transfer Techniques; Glioblastoma; HEK293 Cells; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Micelles; Peptides; Rats; Thymidine Kinase; Xenograft Model Antitumor Assays | 2015 |
Micelle-assisted combination therapies for effective glioblastoma treatment: an in-vitro assessment.
Glioblastoma is the most fatal type of brain tumor, requiring a better chemotherapy regime to prolong the survival of the patient. The toxicity associated with a high dose of a single drug can be overcome by a combination of different anticancer drugs. Methoxy poly(ethylene glycol)-poly (ε-caprolactone) block copolymeric micelles loaded with two different anticancer drugs such as curcumin and rapamycin were used to assess their therapeutic efficacy in glioblastoma cell lines. In addition, the combination of curcumin and rapamycin was also encapsulated in micelles for better anticancer activity. The in-vitro cellular uptake studies and cytotoxicity studies showed that the drugs encapsulated in the micelles showed ∼3.3 times more uptake than a mixture of native drugs as well as a single drug. The enhanced mitochondrial membrane potential depolarization by drug-loaded micelles leads to higher cell death compared with native drugs in T98G glioblastoma cell culture experiments. The drug combination downregulates P13/AKT and serine/threonine kinase proteins, and leads to programmed cell death. Thus, curcumin and rapamycin-loaded micelles can be used effectively for the treatment of glioblastoma. Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Curcumin; Cyclooxygenase 2; Drug Delivery Systems; Drug Synergism; Glioblastoma; Humans; Membrane Potential, Mitochondrial; Micelles; NF-kappa B; Polyesters; Polyethylene Glycols; Sirolimus | 2015 |
Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas.
Glioblastoma is a devastating primary brain tumor resistant to conventional therapies. In this study, we tested the efficacy of combining temozolomide with curcumin, a phytochemical known to inhibit glioblastoma growth, and investigated the mechanisms involved. The data showed that synergy between curcumin and temozolomide was not achieved due to redundant mechanisms that lead to activating protective autophagy both in vitro and in vivo. Autophagy preceded apoptosis, and blocking this response with autophagy inhibitors (3-methyl-adenine, ATG7 siRNA and chloroquine) rendered cells susceptible to temozolomide and curcumin alone or combinations by increasing apoptosis. While curcumin inhibited STAT3, NFκB and PI3K/Akt to affect survival, temozolomide-induced autophagy relied on the DNA damage response and repair components ATM and MSH6, as well as p38 and JNK1/2. However, the most interesting observation was that both temozolomide and curcumin required ERK1/2 to induce autophagy. Blocking this ERK1/2-mediated temozolomide and curcumin induced autophagy with resveratrol, a blood-brain barrier permeable drug, improved temozolomide/curcumin efficacy in brain-implanted tumors. Overall, the data presented demonstrate that autophagy impairs the efficacy of temozolomide/curcumin, and inhibiting this phenomenon could provide novel opportunities to improve brain tumor treatment. Topics: Animals; Apoptosis; Autophagy; Brain Neoplasms; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Survival; Curcumin; Dacarbazine; Dose-Response Relationship, Drug; Drug Synergism; Glioblastoma; Humans; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Rats; Temozolomide | 2015 |
Demethoxycurcumin was prior to temozolomide on inhibiting proliferation and induced apoptosis of glioblastoma stem cells.
Temozolomide (TMZ) is widely used for treating glioblastoma (GBM), which can effectively inhibit the GBM growth for some months; however, it still could not prevent the invariable recurrence of GBM. The existence of glioma stem cells (GSCs) was considered to be a key factor. But TMZ has poor effects on GSCs. Recently, demethoxycurcumin (DMC) has been shown to display anti-tumor activities in malignant gliomas. However, its effects and the potential mechanisms on GSCs were still unclear. Our study showed that DMC was prior to TMZ on resulting in a significant increase in GSC apoptosis and a marked inhibition of cell growth in vitro. And combined treatment of DMC and TMZ showed more significant anti-GSC effects. Further research into the underlying mechanism demonstrated that this novel combinatorial regimen leads to changes of multiple cell signaling pathways including reactive oxygen species (ROS) production and caspase-3 signaling mitochondria-related apoptosis activation as well as inactivation of JAK/STAT3 signaling pathway. Taken together, our data demonstrate that the anti-GSC effects of DMC are better than TMZ, and combined treatment of DMC and TMZ has much stronger effects on GSCs. Topics: Apoptosis; Caspase 3; Cell Proliferation; Curcumin; Dacarbazine; Diarylheptanoids; Glioblastoma; Humans; Neoplastic Stem Cells; Primary Cell Culture; Reactive Oxygen Species; Signal Transduction; Temozolomide | 2015 |
Induction of microRNA-146a is involved in curcumin-mediated enhancement of temozolomide cytotoxicity against human glioblastoma.
MicroRNA (miR)-146a is a negative regulator of nuclear factor-κB (NF-κB) signaling that affects tumor growth and survival. The present study was undertaken to determine whether the cytotoxicity of curcumin (diferuloylmethane), a natural polyphenolic compound isolated from turmeric (Curcuma longa Linn), in glioblastoma cells is mediated through upregulation of miR‑146a. Human U‑87 MG glioblastoma cells were treated with curcumin and temozolomide (TMZ) alone or in combination, and cell proliferation and apoptosis were assessed. The involvement of miR‑146a and NF‑κB signaling in curcumin‑mediated chemosensitization was explored. Curcumin exposure led to upregulation of miR‑146a in U‑87 MG cells. Combined curcumin and TMZ treatment significantly (P<0.05) inhibited U‑87 MG cell proliferation and induced apoptotic death, compared with each alone. Notably, curcumin‑mediated enhancement of TMZ‑induced apoptosis was blocked by depletion of miR‑146a. By contrast, miR‑146a overexpression enhanced apoptosis and suppressed NF‑κB activation in TMZ‑treated cells. Additionally, pharmacological inhibition of NF‑κB signaling significantly increased TMZ‑induced apoptosis. To the best of our knowledge, the present study provides the first evidence that upregulation of miR‑146a and inactivation of NF‑κB signaling mediates the sensitization of human glioblastoma cells to TMZ-induced apoptosis by curcumin. Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Curcumin; Dacarbazine; Drug Resistance, Neoplasm; Drug Synergism; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; MicroRNAs; NF-kappa B; Signal Transduction; Temozolomide | 2015 |
Asymmetric AB3 Miktoarm Star Polymers: Synthesis, Self-Assembly, and Study of Micelle Stability Using AF4 for Efficient Drug Delivery.
A simple and versatile methodology, which employs a combination of ring-opening polymerization and alkyne-azide click chemistry to synthesize amphiphilic AB3 miktoarm stars, is reported. Their aqueous self-assembly behavior was studied using dynamic light scattering, fluorescence, and asymmetrical flow field-flow fractionation (AF4). AB3 miktoarm stars form micelles which incorporate curcumin with high efficiency, and significantly reduce the viability of glioblastoma cells in spheroids. We demonstrate that AF4 is an effective technique to determine the size distribution of self-assembled structures exposed to a biological medium. The ease, with which asymmetric AB3 miktoarm polymers are constructed, provides a platform that can be widely employed to deliver a variety of lipophilic drugs. Topics: Biodegradable Plastics; Cell Line, Tumor; Click Chemistry; Curcumin; Drug Delivery Systems; Glioblastoma; Humans; Micelles | 2015 |
Low-Dose DMC Significantly Enhances the Effect of TMZ on Glioma Cells by Targeting Multiple Signaling Pathways Both In Vivo and In Vitro.
Temozolomide (TMZ) is widely used for treating glioblastoma (GBM), which can effectively inhibit the GBM growth for some months; however, it still cannot prevent the invariable recurrence of GBM. Improving the chemotherapeutic sensitization becomes an urgent agenda. In this study, we found low-dose demethoxycurcumin (DMC) could enhance the sensitivity of TMZ on glioma cells, and high-dose DMC has more significant effects on GBM cells compared with TMZ treatment alone both in vitro and in vivo. And co-administration of DMC and TMZ resulted in a significant increase in GBM apoptosis and a marked inhibition of cell growth pathogenesis of GBM. Mechanistically, DMC and TMZ synergistically increase intracellular level of reactive oxygen species (ROS) production, activate caspase-3-dependent apoptotic pathway, and inactivate of JAK/STAT3 signaling pathway in GBMs, which account for the cell apoptosis and proliferation inhibition. Together, these data implicate that low-dose DMC combined with TMZ represents an effective therapy regimen against GBMs by targeting multiple signaling pathways. Topics: Animals; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Division; Cell Line, Tumor; Curcumin; Dacarbazine; Diarylheptanoids; Drug Synergism; G1 Phase; Glioblastoma; Humans; Janus Kinases; Mice; Mice, Nude; Neoplasm Proteins; Reactive Oxygen Species; Signal Transduction; STAT3 Transcription Factor; Temozolomide; Tumor Stem Cell Assay; Xenograft Model Antitumor Assays | 2015 |
Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.
Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Carbon Dioxide; Cell Line, Tumor; Cell Survival; Curcuma; Dacarbazine; Etoposide; Glioblastoma; Humans; Mice; Plant Extracts; Reverse Transcriptase Polymerase Chain Reaction; Temozolomide | 2015 |
Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.
Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells.. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells.. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment.. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells. Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Curcuma; Down-Regulation; Gene Expression; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Inhibitory Concentration 50; Oncogene Protein v-akt; Phytotherapy; Plant Extracts; Proto-Oncogene Proteins c-akt; RNA, Messenger; Signal Transduction | 2015 |
ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells.
To evaluate the effect of incorporating the polyphenol, curcumin, into nanodisk (ND) particles on its biological activity.. Curcumin-NDs formulated with different scaffold proteins were incubated with cultured glioblastoma multiforme cells.. When ApoE was employed as the ND scaffold protein, enhanced curcumin uptake was observed. Furthermore, ApoE curcumin-NDs induced greater cell death than either free curcumin or ApoAI curcumin-NDs. A total of 1 h after exposure of glioblastoma multiforme cells to ApoE curcumin-NDs, significant curcumin uptake was detected while ApoE was localized at the cell surface. After 2 h, a portion of the curcumin had migrated to the nucleus, giving rise to enhanced fluorescence intensity in discrete intranuclear sites.. ApoE-mediated interaction of curcumin-NDs with glioblastoma multiforme cells leads to enhanced curcumin uptake and increased biological activity. Topics: Antineoplastic Agents; Apolipoproteins E; Apoptosis; Cell Line, Tumor; Cell Survival; Curcumin; Drug Carriers; Glioblastoma; Humans; Nanostructures | 2014 |
Coupling to a glioblastoma-directed antibody potentiates antitumor activity of curcumin.
Current therapies for glioblastoma are largely palliative, involving surgical resection followed by chemotherapy and radiation therapy, which yield serious side effects and very rarely produce complete recovery. Curcumin, a food component, blocked brain tumor formation but failed to eliminate established brain tumors in vivo, probably because of its poor bioavailability. In the glioblastoma GL261 cells, it suppressed the tumor-promoting proteins NF-κB, P-Akt1, vascular endothelial growth factor, cyclin D1 and BClXL and triggered cell death. Expression of exogenous p50 and p65 subunits of NF-κB conferred partial protection on transfected GL261 cells against curcumin insult, indicating that NF-κB played a key role in protecting glioblastoma cells. To enhance delivery, we coupled curcumin to the glioblastoma-specific CD68 antibody in a releasable form. This resulted in a 120-fold increase in its efficacy to eliminate GL261 cells. A very similar dose response was also obtained with human glioblastoma lines T98G and U87MG. GL261-implanted mice receiving intratumor infusions of the curcumin-CD68 adduct followed by tail-vein injections of solubilized curcumin displayed a fourfold to fivefold reduction in brain tumor load, survived longer, and about 10% of them lived beyond 100 days. Hematoxylin-eosin staining of brain sections revealed a small scar tissue mass in the rescued mice, indicating adduct-mediated elimination of glioblastoma tumor. The tumor cells were strongly CD68+ and some cells in the tumor periphery were strongly positive for microglial Iba1, but weakly positive for CD68. This strategy of antibody targeting of curcumin to tumor comes with the promise of yielding a highly effective therapy for glioblastoma brain tumors. Topics: Animals; Antibodies, Neoplasm; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antineoplastic Agents; Brain Neoplasms; Curcumin; Drug Synergism; Glioblastoma; Humans; Immunoenzyme Techniques; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Signal Transduction; Tumor Cells, Cultured | 2014 |
Recombinant receptor-binding domain of diphtheria toxin increases the potency of curcumin by enhancing cellular uptake.
Diphtheria toxin (DT) binds to a specific cell surface receptor, gets internalized, and causes cytotoxicity through its catalytic domain. The toxicity of DT is used in several therapeutic molecules. Here, we have exploited the receptor-binding ability of DT to increase cellular uptake of curcumin, a hydrophobic molecule with low bioavailability and cellular uptake. We have expressed only the receptor-binding domain of DT (RDT) in Escherichia coli. Purified RDT binds to the receptor with an affinity equivalent to that of full-length DT. It also binds to curcumin forming a curcumin-RDT complex, and this increases the fluorescence intensity and fluorescence lifetime of curcumin. The curcumin-RDT complex binds to the receptor and associates with human glioblastoma cells (U-87 MG) expressing the receptor. The cellular uptake of curcumin is higher for the curcumin-RDT complex than curcumin alone. This increase in uptake enhances the antiproliferative effect of curcumin and induces apoptosis of these cells even at a lower dose. Topics: Antineoplastic Agents; Cell Survival; Chromatography, High Pressure Liquid; Curcumin; Diphtheria Toxin; Drug Carriers; Flow Cytometry; Glioblastoma; Humans; Microscopy, Fluorescence; Protein Binding; Protein Conformation; Receptors, Cell Surface; Recombinant Proteins; Surface Plasmon Resonance; Tumor Cells, Cultured | 2014 |
Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells.
Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood-brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid). Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4) gene variants (OCT4A, OCT4B, and OCT4B1), SOX-2 (SRY [sex determining region Y]-box 2), Nanog, and miR-145. Dendrosomal curcumin efficiently suppresses U87MG cells growth with no cytotoxicity related to dendrosome. Additionally, the accumulation of cells in the SubG1 phase was observed in a time- and dose-dependent manner as well as higher rates of apoptosis after dendrosomal curcumin treatment. Conversely, nonneoplastic cells were not affected by this formulation. Dendrosomal curcumin significantly decreased the relative expression of OCT4A, OCT4B1, SOX-2, and Nanog along with noticeable overexpression of miR-145 as the upstream regulator. This suggests that dendrosomal curcumin reduces the proliferation of U87MG cells through the downregulation of OCT4 (octamer binding protein 4) variants and SOX-2 (SRY [sex determining region Y]-box 2) in an miR-145-dependent manner. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Caspases; Cell Cycle; Cell Death; Cell Line, Tumor; Chemistry, Pharmaceutical; Curcumin; Down-Regulation; Drug Carriers; Drug Stability; Glioblastoma; Homeodomain Proteins; Humans; MicroRNAs; Molecular Targeted Therapy; Nanocapsules; Nanog Homeobox Protein; Nanomedicine; Octamer Transcription Factor-3; SOXB1 Transcription Factors; Transcription Factors | 2014 |
Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling.
Temozolomide (TMZ), a DNA alkylating agent, represents the most important chemotherapeutic option for the treatment of glioblastoma in the clinic. Despite its frequent use, the therapeutic efficacy of TMZ remains very limited due to its frequent resistance in glioblastoma. Previous evidence suggested that curcumin (CUM), an ingredient of the Indian spice turmeric, is able to sensitize glioblastoma to TMZ treatment. However, the underlying molecular mechanism remains elusive. In the present study, we performed in vitro and in vivo experiments to evaluate the interaction of CUM and TMZ on the inhibition of glioblastoma and to investigate its potential mechanisms of action using U87MG cell lines and xenograft mouse models. We demonstrated that CUM enhanced the therapeutic response to TMZ in U87MG glioblastoma by enhancing apoptosis. We then proceeded to investigate the potential apoptotic signaling pathways that are involved. We observed a synergistic effect of the combination of CUM and TMZ in generating reactive oxygen species (ROS) production, suggesting that ROS may contribute to the impact of CUM on sensitizing TMZ treatment. We also showed that CUM and TMZ treatment alone significantly suppressed phosphorylated AKT and mTOR, whereas their combination achieved a more pronounced inhibitory effect. These data indicated that blockage of AKT/mTOR signaling appeared to contribute to the elevated apoptosis caused by the combination treatment with CUM and TMZ. In conclusion, this study provided molecular insights into the effects of CUM on the therapeutic response of glioblastoma to TMZ and opened new avenues for optimizing the therapeutic effects of TMZ-based therapies. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Survival; Curcumin; Dacarbazine; Drug Resistance, Neoplasm; Drug Synergism; Glioblastoma; Humans; Mice; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; Temozolomide; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2014 |
β-Elemene inhibits proliferation through crosstalk between glia maturation factor β and extracellular signal‑regulated kinase 1/2 and impairs drug resistance to temozolomide in glioblastoma cells.
β-elemene, a plant-derived drug extracted from Curcuma wenyujin, has demonstrated marked antiproliferative effects on glioblastoma, while toxicity remains low. However, the underlying molecular mechanisms of the antitumor activity of β-elemene remain to be elucidated. Previously, it was identified that the glia maturation factor β (GMFβ)/mitogen-activated protein kinase kinase (MAPK) 3/6/p38 pathway participates in the antiproliferative activity of β-elemene on glioblastoma. In the present study, in order to illustrate the association of GMFβ and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, U87 and U251 cells were treated with β-elemene at various doses and for different durations, and the expression of phosphorylated ERK1/2 (p-ERK1/2), ERK1/2, B-cell lymphoma 2 (Bcl-2), Bcl2-associated X and survivin was examined by western blot analysis. Following treatment with β-elemene and the ERK1/2 inhibitor PD98059, U87 cell viability was evaluated using a Cell Counting Kit-8 (CCK-8) assay, and the expression levels of Bcl-2 and survivin were examined by western blot analysis. GMFβ was then downregulated by RNA interference in β-elemene-treated U87 cells, and the effect of this on the expression of ERK1/2 and p-ERK1/2 was determined by western blot analysis. Finally, the chemosensitisation of U87 cells to temozolomide (TMZ) through β-elemene was examined using the CCK-8 assay. The results demonstrated that β-elemene inhibited the proliferation of U87 glioblastoma cells through the GMFβ‑dependent inactivation of the ERK1/2-Bcl-2/survivin pathway. Furthermore, inhibition of ERK1/2 by PD98059 enhanced the antitumor effect of β-elemene and impaired the expression levels of Bcl-2 and survivin. β-elemene also increased the sensitivity of U87 glioblastoma cells to the chemotherapeutic TMZ, which was synergistically enhanced by PD98059. In conclusion, these results suggested that GMFβ-dependent inactivation of the ERK1/2-Bcl-2/survivin pathway mediated the antiproliferative effect of β-elemene on glioblastoma. Therefore, β-elemene is a promising chemosensitizer or adjuvant therapeutic for TMZ against glioblastoma brain tumors. Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Cell Proliferation; Cell Survival; Curcuma; Dacarbazine; Down-Regulation; Drug Resistance, Neoplasm; Flavonoids; Glia Maturation Factor; Glioblastoma; Humans; Inhibitor of Apoptosis Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; RNA Interference; RNA, Small Interfering; Sesquiterpenes; Survivin; Temozolomide | 2014 |
Epigenetic reactivation of RANK in glioblastoma cells by curcumin: involvement of STAT3 inhibition.
DNA methylation plays an essential role in carcinogenesis. Promoter hypermethylation can result in transcriptional silencing of specific genes, such as tumor suppressors. Thus far, few reports have investigated the effect of curcumin, an active component of the perennial herb Curcuma longa, on DNA methylation. In the present study, we evaluated the effects of curcumin on receptor activator of NF-κB (RANK) gene expression in human glioblastoma cells. Incubation of cells with therapeutic concentrations of curcumin resulted in a significant elevation of RANK expression at both the mRNA and protein levels in two glioblastoma cell lines. We further confirmed that this elevation was associated with promoter demethylation through methylation-specific polymerase chain reaction (PCR) and bisulfite sequencing PCR. Additionally, we demonstrated that knockdown of STAT3, an oncogenic transcription factor, is sufficient to induce RANK promoter demethylation along with RANK reactivation. These results demonstrated that curcumin induced RANK gene reactivation through epigenetic modification in human glioblastoma cells, and that STAT3 is involved in RANK promoter hypermethylation and epigenetic silencing, thus allowing for further applications of curcumin epigenetic therapy in glioma and therapeutic implications of STAT3 in human glioblastoma. Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; CpG Islands; Curcumin; DNA Methylation; DNA-Cytosine Methylases; Epigenesis, Genetic; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Promoter Regions, Genetic; Receptor Activator of Nuclear Factor-kappa B; STAT3 Transcription Factor | 2013 |
Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model.
Glioblastomas (GBMs) are highly lethal primary brain tumours. Treatment of these malignant gliomas remains ineffective as these are extremely resistant to chemotherapeutic applications. Furthermore, combination therapy for cancer treatment is becoming more popular because it generates synergistic anticancer effects, by reducing individual drug-related toxicity and associated side effects. Currently, magnetic nanoparticles (MNPs) based drug delivery system has attracted much more attention owing to its intrinsic magnetic properties and drug loading capacity. In the present study, MNPs based drug delivery approach for co-delivering of potent chemotherapeutic drugs such as Curcumin (herbal drug) and Temozolomide (DNA methylating agent) has been implemented. The dual drug loaded MNPs formulations were evaluated in two-dimensional (2-D) monolayer culture and three-dimensional (3-D) tumour spheroid culture of T-98G cells for understanding the therapeutic discrepancy. The dual drug loaded MNPs formulations demonstrated higher cytotoxic effect than single drug loaded MNPs formulations as compared to their corresponding native drugs in 2-D and 3-D culture. The combination index (CI) analysis revealed synergistic mode of action of dual drug loaded MNPs formulations, which was further confirmed by cell death induction assay mediated by acridine orange (AO)/propidium iodide (PI) staining, illustrating higher efficacy of the formulation towards GBM therapy. Topics: Acridine Orange; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Brain Neoplasms; Cell Culture Techniques; Cell Death; Cell Line, Tumor; Curcumin; Dacarbazine; Drug Delivery Systems; Drug Synergism; Glioblastoma; Humans; Magnetics; Nanoparticles; Propidium; Staining and Labeling; Temozolomide | 2013 |
Design, synthesis, and evaluation of curcumin-derived arylheptanoids for glioblastoma and neuroblastoma cytotoxicity.
Using an innovative approach toward multiple carbon-carbon bond-formations that relies on the multifaceted catalytic properties of titanocene complexes we constructed a series of C1-C7 analogs of curcumin for evaluation as brain and peripheral nervous system anti-cancer agents. C2-Arylated analogs proved efficacious against neuroblastoma (SK-N-SH & SK-N-FI) and glioblastoma multiforme (U87MG) cell lines. Similar inhibitory activity was also evident in p53 knockdown U87MG GBM cells. Furthermore, lead compounds showed limited growth inhibition in vitro against normal primary human CD34+hematopoietic progenitor cells. Taken together, the present findings indicate that these curcumin analogs are viable lead compounds for the development of new central and peripheral nervous system cancer chemotherapeutics with the potential for little effects on normal hematopoietic progenitor cells. Topics: Antineoplastic Agents; Cell Proliferation; Cell Survival; Cells, Cultured; Curcumin; Drug Design; Glioblastoma; Hematopoietic Stem Cells; Humans; Neuroblastoma; Structure-Activity Relationship; Tumor Suppressor Protein p53 | 2013 |
A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells.
Mutations of the p53 oncosuppressor gene are amongst the most frequent aberration seen in human cancer. Some mutant (mt) p53 proteins are prone to loss of Zn(II) ion that is bound to the wild-type (wt) core, promoting protein aggregation and therefore unfolding. Misfolded p53 protein conformation impairs wtp53-DNA binding and transactivation activities, favouring tumor growth and resistance to antitumor therapies. Screening studies, devoted to identify small molecules that reactivate mtp53, represent therefore an attractive anti-cancer therapeutic strategy. Here we tested a novel fluorescent curcumin-based Zn(II)-complex (Zn-curc) to evaluate its effect on mtp53 reactivation in cancer cells.. P53 protein conformation was examined after Zn-curc treatment by immunoprecipitation and immunofluorescence assays, using conformation-specific antibodies. The mtp53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The intratumoral Zn-curc localization was evaluated by immunofluorescence analysis of glioblastoma tissues of an ortothopic mice model.. The Zn-curc complex induced conformational change in p53-R175H and -R273H mutant proteins, two of the most common p53 mutations. Zn-curc treatment restored wtp53-DNA binding and transactivation functions and induced apoptotic cell death. In vivo studies showed that the Zn-curc complex reached glioblastoma tissues of an ortothopic mice model, highlighting its ability to crossed the blood-tumor barrier.. Our results demonstrate that Zn-curc complex may reactivate specific mtp53 proteins and that may cross the blood-tumor barrier, becoming a promising compound for the development of drugs to halt tumor growth. Topics: Animals; Brain Neoplasms; Cations, Divalent; Cell Death; Cell Line, Tumor; Coordination Complexes; Curcumin; Disease Models, Animal; Gene Expression; Glioblastoma; Humans; Mice; Mice, Nude; Mutation; Protein Conformation; Random Allocation; Tumor Suppressor Protein p53; Zinc | 2013 |
The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma.
Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs. Topics: Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Cycle; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cisplatin; Curcumin; Doxorubicin; Drug Synergism; Glioblastoma; Humans; Male; Mitochondria; NF-kappa B; PTEN Phosphohydrolase; Rats; Rats, Wistar; Tumor Suppressor Protein p53 | 2012 |
Trivanillic polyphenols with anticancer cytostatic effects through the targeting of multiple kinases and intracellular Ca2+ release.
Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC(50) in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. Topics: Actin Cytoskeleton; Animals; Antineoplastic Agents; Apoptosis; Calcium; Cell Line, Tumor; Curcumin; Cytostatic Agents; Female; Glioblastoma; Inhibitory Concentration 50; Lung Neoplasms; Male; Mice; Microscopy, Fluorescence; Microscopy, Video; Mitosis; Phosphotransferases; Polyphenols | 2012 |
Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy.
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. Recently, a growing body of evidence suggests that glioma-initiating cells (GICs) are responsible for the initiation and recurrence of GBM. However, the factors determining the differential development of GICs remain poorly defined. In the present study, we show that curcumin, a natural compound with low toxicity in normal cells, significantly induced differentiation of GICs in vivo and in vitro by inducing autophagy. Moreover, curcumin also suppressed tumor formation on intracranial GICs implantation into mice. Our results suggest that autophagy plays an essential role in the regulation of GIC self-renewal, differentiation, and tumorigenic potential, suggesting autophagy could be a promising therapeutic target in a subset of glioblastomas. This is the first evidence that curcumin has differentiating and tumor-suppressing actions on GICs. Topics: Animals; Autophagy; Brain Neoplasms; Cell Differentiation; Curcumin; Glioblastoma; Humans; Mice; Mice, Nude; Neoplasm Transplantation; Neoplastic Stem Cells; Tumor Cells, Cultured | 2012 |
Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy.
Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Topics: Animals; Antineoplastic Agents; Biological Availability; Brain; Brain Neoplasms; Cell Cycle; Cell Death; Cell Line, Tumor; Cell Movement; Cell Proliferation; Curcumin; Dose-Response Relationship, Drug; Enzyme Assays; Flow Cytometry; Gene Expression Regulation, Neoplastic; Glioblastoma; Glycerides; Humans; Inhibitory Concentration 50; Male; Multidrug Resistance-Associated Proteins; Nanoparticles; Neoplasm Invasiveness; Rats; Rats, Sprague-Dawley; Telomerase | 2012 |
Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin.
Malignant brain tumours are rare but are the most challenging types of cancers to treat. Despite conventional multimodality approaches available for their management, the outlook for most patients remains dismal due to the ability of the tumour cells to invade the normal brain. Attention has now focused on novel therapeutic interventions such as as the use of micronutrients. Both chokeberry extract (Aronia melanocarpa), which is rich in natural pigments such as anthocyanins and curcumin (diferuloylmethane) found in turmeric (Curcuma longa) have been reported to possess anticancer properties in other cancers. The aim of this study was to extend our previous research to evaluate the therapeutic potential of these two agents by testing their ability to induce apoptosis in an established glioblastoma cell line (U373). This was accomplished by treating the cells for 48 h with either chokeberry extract or curcumin, and using the Annexin-V assay. Gene profiles of 8 MMPs (2, 9, 14, 15, 16, 17, 24 and 25) and 4 TIMPs (1, 2, 3 and 4) were analysed for effects of mediators of invasion by quantitative real-time polymerase chain reaction (RT-PCR). The IC50 values determined for curcumin and chokeberry extract were 15 and 200 µg/ml, respectively. Our results also suggest that curcumin induces apoptosis but chokeberry extract is necrotic to this cell line. It is possible that chokeberry extract kills the cells by other non-apoptotic pathways. In addition, the RT-PCR results show downregulation of the gene expression of MMP-2, -14, -16 and -17 for both micronutrients. Taken together, the comparative data suggest that both curcumin and chokeberry extract may exhibit their anticancer potential by inducing apoptosis and inhibiting invasion by reducing MMP gene expression. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Brain Neoplasms; Cell Death; Cell Line, Tumor; Curcumin; Drug Screening Assays, Antitumor; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Inhibitory Concentration 50; Matrix Metalloproteinase 14; Matrix Metalloproteinase 16; Matrix Metalloproteinase 2; Matrix Metalloproteinases, Membrane-Associated; Matrix Metalloproteinases, Secreted; Photinia; Plant Extracts; Polyphenols | 2012 |
Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells.
Glioblastoma, the deadliest brain tumor in humans, responds poorly to conventional chemotherapeutic agents because of existence of highly chemoresistant human brain tumor stem cells (HBTSC). An effective therapeutic strategy is urgently needed to target HBTSC as well as other glioblastoma cells. We explored synergistic efficacy of a low dose of curcumin (CCM) and a low dose of paclitaxel (PTX) in HBTSC and human glioblastoma LN18 (p53 mutant and PTEN proficient) and U138MG (p53 mutant and PTEN mutant) cells. The highest expression of the cancer stem cell markers aldehyde dehydrogenase 1 (ALDH1) and CD133 occurred in HBTSC when compared with LN18 and U138MG cells. Combination of 20μM CCM and 10nM PTX worked synergistically and more effectively than either drug alone in decreasing viability in all cells. Combination of CCM and PTX was highly effective in inducing both morphological and biochemical features of apoptosis. Apoptosis required activation of caspase-8, cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, and mitochondrial release of cytochrome c, Smac, and apoptosis-inducing factor (AIF). Phosphorylation of Bcl-2 following combination therapy appeared to promote Bax homodimerization and mitochondrial release of pro-apoptotic factors into the cytosol. Increases in activities of cysteine proteases confirmed the completion of apoptotic process. Combination therapy inhibited invasion of cells, reduced expression of survival and proliferation factors and also angiogenic factors, and prevented HBTSC, LN18, and U138MG cells from promoting network formation. Collectively, the combination of CCM and PTX worked as a promising therapy for controlling the growth of HBTSC and other glioblastoma cells. Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Cell Line; Curcumin; Drug Synergism; Glioblastoma; Humans; Microscopy, Fluorescence; Neoplastic Stem Cells; Paclitaxel | 2012 |
Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force™ in brain tumor cell lines.
We have investigated on the potentiation of etoposide (ETP) and temozolomide (TMZ) cytotoxicity in U-87MG glioblastoma and D283 medulloblastoma cell lines by curcumin (CUR) and turmeric force (TF), a nutraceutical formulation of turmeric, with the objective of assessing the potential for their adjuvant use in brain tumor chemotherapy. While U-87MG cell line was generally resistant to TMZ, IC50 values for CUR and TF were 37.33 and 30.75 µg/ml, respectively. TF is the only agent that demonstrated efficacy at the IC90 level. When CUR or TF was combined with ETP and TMZ, increased chemotherapeutic efficiency in the U-87MG cells was observed. TF is highly cytotoxic to D283 Med cell line compared to curcumin with an IC50 value of 1.55 ug/ml. Although both CUR and TF potentiated ETP and TMZ cytotoxicity, TF is more efficient than CUR in both U-87MG and D283 Med cell lines. Treatment of U-87MG cells with the triple combination of TMZ+ETP+TF induced a high percentage of apoptotic cells. Potential mechanisms that may explain evidence of synergy include down regulation of p10 and p53 mRNAs and increase in BAX/Bcl-2 mRNA ratio. These pre-clinical results suggest that TF may be useful as an adjuvant with ETP and TMZ for brain tumor chemotherapy. Topics: Antineoplastic Agents; Antineoplastic Agents, Alkylating; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cerebellar Neoplasms; Curcuma; Curcumin; Dacarbazine; Dose-Response Relationship, Drug; Drug Synergism; Etoposide; Glioblastoma; Humans; Inhibitory Concentration 50; Medulloblastoma; Phytotherapy; Plant Extracts; Plants, Medicinal; Rhizome; Temozolomide | 2012 |
New ruthenium(II)-letrozole complexes as anticancer therapeutics.
Novel ruthenium-letrozole complexes have been prepared, and cell viability of two human cancer cell types (breast and glioblastoma) was determined. Some ruthenium compounds are known for their cytotoxicity to cancer cells, whereas letrozole is an aromatase inhibitor administered after surgery to post-menopausal women with hormonally responsive breast cancer. A significant in vitro activity was established for complex 5·Let against breast cancer MCF-7 cells and significantly lower activity against glioblastoma U251N cells. The activity of 5·Let was even higher than that of 4, a compound analogous to the well-known drug RAPTA-C. Results from the combination of 5·Let (or 4) with 3-methyladenine (3-MA) or with curcumin, respectively, revealed that the resultant cancer cell death likely involves 5·Let-induced autophagy. Topics: Adenine; Adenocarcinoma; Antineoplastic Agents; Aromatase Inhibitors; Autophagy; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Coordination Complexes; Crystallography, X-Ray; Curcumin; Drug Interactions; Drug Screening Assays, Antitumor; Female; Glioblastoma; Humans; Letrozole; Nitriles; Ruthenium; Stereoisomerism; Structure-Activity Relationship; Triazoles | 2012 |
NFκB inhibitors induce cell death in glioblastomas.
Identification of novel target pathways in glioblastoma (GBM) remains critical due to poor prognosis, inefficient therapies and recurrence associated with these tumors. In this work, we evaluated the role of nuclear-factor-kappa-B (NFκB) in the growth of GBM cells, and the potential of NFκB inhibitors as antiglioma agents. NFκB pathway was found overstimulated in GBM cell lines and in tumor specimens compared to normal astrocytes and healthy brain tissues, respectively. Treatment of a panel of established GBM cell lines (U138MG, U87, U373 and C6) with pharmacological NFκB inhibitors (BAY117082, parthenolide, MG132, curcumin and arsenic trioxide) and NFκB-p65 siRNA markedly decreased the viability of GBMs as compared to inhibitors of other signaling pathways such as MAPKs (ERK, JNK and p38), PKC, EGFR and PI3K/Akt. In addition, NFκB inhibitors presented a low toxicity to normal astrocytes, indicating selectivity to cancerous cells. In GBMs, mitochondrial dysfunction (membrane depolarization, bcl-xL downregulation and cytochrome c release) and arrest in the G2/M phase were observed at the early steps of NFκB inhibitors treatment. These events preceded sub-G1 detection, apoptotic body formation and caspase-3 activation. Also, NFκB was found overstimulated in cisplatin-resistant C6 cells, and treatment of GBMs with NFκB inhibitors overcame cisplatin resistance besides potentiating the effects of the chemotherapeutics, cisplatin and doxorubicin. These findings support NFκB as a potential target to cell death induction in GBMs, and that the NFκB inhibitors may be considered for in vivo testing on animal models and possibly on GBM therapy. Topics: Animals; Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Astrocytes; Brain Neoplasms; Cell Cycle; Cell Death; Cell Line, Tumor; Cisplatin; Curcumin; Doxorubicin; Drug Synergism; Glioblastoma; Humans; Leupeptins; Molecular Targeted Therapy; NF-kappa B; Nitriles; Oxides; Rats; Sesquiterpenes; Signal Transduction; Sulfones | 2011 |
A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors.
Curcumin is a polyphenolic compound derived from the Indian spice turmeric. We used nanoparticle-encapsulated curcumin to treat medulloblastoma and glioblastoma cells. This formulation caused a dose-dependent decrease in growth of multiple brain tumor cell cultures, including the embryonal tumor derived lines DAOY and D283Med, and the glioblastoma neurosphere lines HSR-GBM1 and JHH-GBM14. The reductions in viable cell mass observed were associated with a combination of G(2)/M arrest and apoptotic induction. Curcumin also significantly decreased anchorage-independent clonogenic growth and reduced the CD133-positive stem-like population. Down-regulation of the insulin-like growth factor pathway in DAOY medulloblastoma cells was observed, providing one possible mechanism for the changes. Levels of STAT3 were also attenuated. Hedgehog signaling was blocked in DAOY cells but Notch signaling was not inhibited. Our data suggest that curcumin nanoparticles can inhibit malignant brain tumor growth through the modulation of cell proliferation, survival and stem cell phenotype. Topics: AC133 Antigen; Antigens, CD; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Curcumin; Down-Regulation; Glioblastoma; Glycoproteins; Hedgehog Proteins; Humans; Medulloblastoma; Mitosis; Nanocapsules; Neoplastic Stem Cells; Peptides; Polymers; Receptors, Notch; Signal Transduction; Somatomedins; STAT3 Transcription Factor; Tumor Stem Cell Assay | 2011 |
Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts.
Among the natural products shown to possess chemopreventive and anticancer properties, curcumin is one of the most potent. In the current study, we investigated the effects of this natural product on the growth of human glioma U-87 cells xenografted into athymic mice. We show here that curcumin administration exerted significant anti-tumor effects on subcutaneous and intracerebral gliomas as demonstrated by the slower tumor growth rate and the increase of animal survival time. While investigating the mechanism of its action in vivo, we observed that curcumin decreased the gelatinolytic activities of matrix metalloproteinase-9. Furthermore, treatment with curcumin inhibited glioma-induced angiogenesis as indicated by the decrease of endothelial cell marker from newly formed vessels and by the diminution of the concentration of hemoglobin in curcumin-treated tumors. We also demonstrate, using an in vitro model of blood-brain barrier, that curcumin can cross the blood-brain barrier to a high level. These are the first results showing that curcumin suppresses tumor growth of gliomas in xenograft models. The mechanisms of the anti-tumor effects of curcumin were related, at least partly, to the inhibition of glioma-induced angiogenesis. Topics: Angiogenesis Inhibitors; Animals; Animals, Newborn; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Blood-Brain Barrier; Cell Line; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cells, Cultured; Curcumin; Female; Glioblastoma; Humans; Matrix Metalloproteinase Inhibitors; Mice; Mice, Nude; Neovascularization, Pathologic; Rats; Survival Analysis; Transcytosis; Tumor Burden; Xenograft Model Antitumor Assays | 2010 |
The anti-cancer efficacy of curcumin scrutinized through core signaling pathways in glioblastoma.
Curcumin has been verified as an anti-cancer compound via multiple molecular targets. Its effective mechanisms include cell cycle arrest, inducing apoptosis, suppressing oncogenes, and enhancing tumor suppressor genes. The resistance of cells to chemotherapy, however, derives from the variable genetic aberration of cancer cells. Consequently, the core signaling pathways of glioblastoma have been explored to evaluate the efficacy of curcumin in proceeding through mutated genes in those pathways. In this study, the efficacy of curcumin was investigated in DBTRG cells. The cytotoxic ability was detected with MTT assay, and the influence of the cell cycle was checked with flow cytometry. The influence of the core signaling pathways was evaluated by Western blotting through the predominantly mutated proteins which included p53, p21, and cdc2 in the p53 pathway, CDKN2A/p16 and RB in the RB pathway, and EGFR, mTOR, Ras, PTEN, and Akt in the RTK-Ras-PI3K pathway. In addition, the apoptotic effect was determined by apoptosis-associated proteins Bcl-2, Bax, and caspase 3. Curcumin exhibits superior cytotoxicity on glioblastoma in a dose- and time-dependent manner in the MTT assay. In the core signaling pathways of glioblastoma, curcumin either significantly influences the p53 pathway by enhancing p53 and p21 and suppressing cdc2 or significantly inhibits the RB pathway by enhancing CDKN2A/p16 and suppressing phosphorylated RB. In the apoptotic pathway, the Bax and caspase 3 are significantly suppressed by curcumin and the Giemsa stain elucidates apoptotic features of DBTRG cells as well. In conclusion, curcumin appears to be an effective anti-glioblastoma drug through inhibition of the two core signaling pathways and promotion of the apoptotic pathway. Topics: Analysis of Variance; Antineoplastic Agents; Apoptosis; Azure Stains; Blotting, Western; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Shape; Cell Survival; Curcumin; Flow Cytometry; Glioblastoma; Humans; Microscopy; PTEN Phosphohydrolase; Retinoblastoma Protein; Signal Transduction; Tumor Suppressor Protein p53 | 2010 |
Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells.
Curcuminoids, natural plant components, have been recently shown to display antioxidant and anti-inflammatory activities. They also produce potent chemo-preventive action against several types of cancer. In the present study, the anti-proliferative and induced apoptosis effects of curcuminoids have been investigated in human brain glioblastoma multiforme (GBM) 8401 cells. Results indicated that curcuminoids have produced an inhibition of cell proliferation in a dose-dependent manner as dosage increased from 12.5 to 100 μM (n = 6) via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dose of curcuminoids. We have studied the mitochondrial membrane potential (ΔΨm), DNA fragmentation, caspase-3, caspase-8, and caspase-9 activation, and nuclear factor κB (NF-κB) transcriptional factor activity to analyze apoptosis in GBM 8401 cells. From these approaches, apoptosis was induced by curcuminoids in human brain GBM 8401 cells via mitochondria and a caspase-dependent pathway. The results observed with proliferation inhibition (y = 94.694e(-0.025x), R(2) = 0.9901, and n = 6) and apoptosis (y = 0.9789e(-0.0102x), R(2) = 0.99854, and n = 3) depend upon the amount of curcuminoid treatment in the cancer cells. Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Caspase 3; Cell Division; Cell Line, Tumor; Curcumin; DNA Fragmentation; Glioblastoma; Humans | 2010 |
Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells.
Glioblastoma is the most malignant human brain tumor that shows poor response to existing therapeutic agents. Search continues for an effective therapy for controlling this deadliest brain tumor. Curcumin (CCM), a polyphenolic compound from Curcuma longa, possesses anti-cancer properties in both in vitro and in vivo. In the present investigation, we evaluated the therapeutic efficacy of CCM against human malignant glioblastoma U87MG cells. Trypan blue dye exclusion test showed decreased viability of U87MG cells with increasing dose of CCM. Wright staining and ApopTag assay, respectively, showed the morphological and biochemical features of apoptosis in U87MG cells treated with 25 microM and 50 microM of CCM for 24 h. Western blotting showed activation of caspase-8, cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, and release of cytochrome c from mitochondria followed by activation of caspase-9 and caspase-3 for apoptosis. Also, CCM treatments increased cytosolic level of Smac/Diablo to suppress the inhibitor-of-apoptosis proteins and down regulated anti-apoptotic nuclear factor kappa B (NFkappaB), favoring the apoptosis. Increased activities of calpain and caspase-3 cleaved 270 kDa alpha-spectrin at specific sites generating 145 kDa spectrin break down product (SBDP) and 120 kDa SBDP, respectively, leading to apoptosis in U87MG cells. Results show that CCM is an effective therapeutic agent for suppression of anti-apoptotic factors and activation of calpain and caspase proteolytic cascades for apoptosis in human malignant glioblastoma cells. Topics: Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Brain Neoplasms; Caspase 8; Cell Line, Tumor; Cell Survival; Curcumin; Cysteine Endopeptidases; Cytochromes c; Cytosol; DNA Fragmentation; Enzyme Activation; Glioblastoma; Humans; Mitochondria; NF-kappa B; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Spectrin; Trypan Blue | 2007 |
Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors.
Malignant gliomas are a debilitating class of brain tumors that are resistant to radiation and chemotherapeutic drugs, contributing to the poor prognosis associated with these tumors. Over-expression of transcription factors such as NFkappaB and AP-1 contribute to the enhanced glioma survival, radioresistance, and chemoresistance. Curcumin, which may inhibit these pathways, was therefore investigated for a potential therapeutic role in glioma. The effect of curcumin on glioma survival was investigated in human (T98G, U87MG, and T67) and rat (C6) glioma cell lines. The ability of curcumin to overcome glioma cell radioresistance and chemoresistance was also explored. Curcumin reduced cell survival in a p53- and caspase-independent manner, an effect correlated with the inhibition of AP-1 and NFkappaB signaling pathways via prevention of constitutive JNK and Akt activation. Curcumin-sensitized glioma cells to several clinically utilized chemotherapeutic agents (cisplatin, etoposide, camptothecin, and doxorubicin) and radiation, effects correlated with reduced expression of bcl-2 and IAP family members as well as DNA repair enzymes (MGMT, DNA-PK, Ku70, Ku80, and ERCC-1). These findings support a role for curcumin as an adjunct to traditional chemotherapy and radiation in the treatment of brain cancer. Topics: Animals; Antineoplastic Agents; Brain Neoplasms; Caspases; Cell Proliferation; Cell Survival; Curcumin; DNA Repair; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; JNK Mitogen-Activated Protein Kinases; NF-kappa B; Proto-Oncogene Proteins c-akt; Rats; Transcription Factor AP-1; Transcriptional Activation; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 2007 |
Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells.
The therapeutic effect of curcumin (CCM), a polyphenolic compound from the rhizome of Curcuma longa, has not yet been examined in glioblastoma. We used human glioblastoma T98G cells to explore the efficacy of CCM for inducing apoptosis and identifying proteolytic mechanisms involved in this process. Trypan blue dye exclusion test showed decrease in cell viability with increasing dose of CCM. Wright staining and ApopTag assay showed, respectively, morphological and biochemical features of apoptosis in T98G cells exposed to 25 microM and 50 microM of CCM for 24 h. Treatment with CCM activated receptor-mediated pathway of apoptosis as Western blotting showed activation of caspase-8 and cleavage of Bid to tBid. Besides, CCM caused an increase in Bax:Bcl-2 ratio, and mitochondrial release of cytochrome c, Second mitochondrial activator of caspases/Direct IAP binding protein with low pI (Smac/Diablo), and apoptosis-inducing-factor (AIF) indicating involvement of mitochondria-mediated pathway as well. Down regulation of the nuclear factor kappa B (NFkappaB), increased expression of inhibitor of nuclear factor kappa B alpha (IkappaB alpha), and decreased expression of inhibitor-of-apoptosis proteins (IAPs) such as c-IAP1 and c-IAP2 in T98G cells following CCM treatment suggested suppression of survival signal. Activation of caspase-9 and caspase-3 was detected in generation of 35 kD and 20 kD active fragments, respectively. Calpain and caspase-3 activities cleaved 270 kD alpha-spectrin at specific sites to generate 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Our results strongly suggest that CCM induced both receptor-mediated and mitochondria-mediated proteolytic mechanisms for induction of apoptosis in T98G cells. Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Blotting, Western; Cell Line, Tumor; Cell Survival; Curcumin; Dose-Response Relationship, Drug; Enzyme Activation; Glioblastoma; Humans; Mitochondria; Mitochondrial Proteins; Molecular Weight; Peptide Hydrolases; Receptors, Cell Surface; Staining and Labeling | 2006 |
Expression of the constitutively activated RelA/NF-kappaB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion.
Although malignant gliomas are highly invasive tumors, a characteristic that contributes to the commonly observed therapeutic failures and local disease recurrences, the molecular events that regulate invasion in these tumors remain poorly understood. Because the transcription factor RelA/NF-kappaB has been shown to regulate invasion during several cellular processes, we have examined immunohistochemically expression of the constitutively activated RelA/NF-kappaB in tissues obtained from 49 astrocytic tumors [8 diffuse astrocytomas, 9 anaplastic astrocytomas (AAs) and 32 glioblastomas (GBMs)]. In addition, we examined the in vitro effects of antisense oligonucleotides and curcumin on the expression and activation of RelA/NF-kappaB, urokinase-type plasminogen activator (u-PA) expression, migration, and invasion in the T98G glioma cell line. Expression of the constitutively activated RelA/NF-kappaB was observed in 2 (25%) of 8 cases of diffuse astrocytomas, 5 (55.6%) of 9 cases of AAs, and 30 (93.8%) of 32 cases of GBMs. This expression was significantly correlated with the malignant potential in astrocytic tumors (P < 0.001). Moreover, antisense oligonucleotides and curcumin inhibited phorbol-12-myristate-13-acetate (PMA)-induced RelA/NF-kappaB expression or activation (or both), down-regulated u-PA expression, and reduced the migration and invasive potentials of T98G glioma cells. Thus, the expression of constitutively activated RelA/NF-kappaB is associated with malignancy potential in astrocytic tumors and may play a critical role in the regulation of u-PA expression and invasiveness in gliomas. RelA/NF-kappaB may therefore be an intriguing candidate for studies aimed at understanding and prevention of the invasiveness of gliomas. Topics: Astrocytoma; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Nucleus; Culture Media, Conditioned; Curcumin; Enzyme Induction; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Neoplasm Invasiveness; Neoplasm Proteins; NF-kappa B; Oligonucleotides, Antisense; Retrospective Studies; RNA, Messenger; RNA, Neoplasm; Single-Blind Method; Tetradecanoylphorbol Acetate; Transcription Factor RelA; Urokinase-Type Plasminogen Activator | 2005 |