curcumin has been researched along with Communicable-Diseases* in 4 studies
3 review(s) available for curcumin and Communicable-Diseases
Article | Year |
---|---|
The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis.
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin. Topics: Communicable Diseases; Curcumin; Cytokines; Humans; Immunity; Sepsis | 2022 |
Effects of Curcumin and Its Analogues on Infectious Diseases.
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent. Topics: Anti-Bacterial Agents; Anti-Infective Agents; Bacteria; Communicable Diseases; Curcumin; Humans | 2021 |
Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity.
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals. Topics: Animals; Antineoplastic Agents, Phytogenic; Communicable Diseases; Curcumin; Humans; Inflammation; Longevity; Neoplasms; p21-Activated Kinases; Phytotherapy; Plants, Medicinal; Propolis | 2014 |
1 other study(ies) available for curcumin and Communicable-Diseases
Article | Year |
---|---|
Effect of curcumin nanoparticles and alcoholic extract of Falcaria vulgaris on the growth rate, biofilm, and gene expression in Pseudomonas aeruginosa isolated from burn wound infection.
This study aimed to investigate the effect of Curcumin nanoparticles and alcoholic extract of Falcaria vulgaris on the growth rate, biofilm, and gene expression in Pseudomonas aeruginosa isolated from burn wound infection.. The alcoholic extract of Falcaria vulgaris was purchased from Pasargad Company. Curcumin nanoparticles were synthesized. Antibacterial activity of Curcumin nanoparticles and alcoholic extract of Falcaria vulgaris was investigated by microdilution method alone and in combination. Biofilm inhibitory was investigated by microtitrplate method. Effect of Curcumin nanoparticles and alcoholic extract of Falcaria vulgaris were evaluated on algD gene expression via Real-Time PCR. Cytotoxicity was evaluated by MTT assay on HDF cell line. Then, the data were analyzed using SPSS software.. Synthesized Curcumin nanoparticles were approved by Fourier Transform Infrared (FTIR), and Scanning Electron Microscope. The alcoholic extract of Falcaria Vulgaris showed significant antibacterial activity against multidrug resistance (MDR) P. aeruginosa isolates at a concentration of 156.25 µg/mL. Moreover, MIC of the curcumin nanoparticle for isolates was 625 µg/mL. Based on fraction inhibition concentration, synergy, and the additive effect were shown against %7.7, and %93.3 of MDRs, respectively. The sub-MIC concentration of the binary compound reduced biofilms and algD gene expression in P. aeruginosa isolates. The Biological function of HDF cell lines was desirable after the effect of the binary compound.. Regarding our results, this combination can be suggested as a promising agent in terms of biofilm inhibitory and antimicrobial properties. Topics: Anti-Bacterial Agents; Biofilms; Burns; Communicable Diseases; Curcumin; Gene Expression; Humans; Microbial Sensitivity Tests; Nanoparticles; Pseudomonas aeruginosa; Wound Infection | 2023 |