curcumin has been researched along with Cardiomyopathies* in 7 studies
2 review(s) available for curcumin and Cardiomyopathies
Article | Year |
---|---|
New insights into the ameliorative effects of ferulic acid in pathophysiological conditions.
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.). Topics: Alzheimer Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; Cardiomyopathies; Cell Differentiation; Coumaric Acids; Curcumin; Diabetes Complications; Humans; Inflammation; Parkinson Disease; Schwann Cells; Skin Diseases | 2017 |
Antioxidant nutrients and adriamycin toxicity.
The anthracycline antibiotic adriamycin (doxorubicin) is one of the most effective chemotherapeutic agents against a wide variety of cancers. However, its use is seriously limited by the development in the heart of acute and chronic toxic effects. Mechanisms of action and toxicity of adriamycin are briefly revised in this review. Among followed strategies to attenuate adriamycin toxicity are dosage optimisation, synthesis and use of analogues or combined therapy with antioxidants. The most promising results come from the combination of the drug delivery together with an antioxidant in order to reduce oxidative stress. Many antioxidants have been assayed with very different results. Among these molecules, metal ions chelators and low-molecular-mass agents that scavenge reactive oxygen species and that are synthesised in vivo have been widely studied. However, the present review will be exclusively focused on the antioxidants that are derived from the diet, in particular the role of vitamin E, vitamin C, vitamin A, coenzyme Q, flavonoids, antioxidant components of virgin olive oil and selenium. Topics: Animals; Antineoplastic Agents; Antioxidants; Ascorbic Acid; Cardiomyopathies; Curcuma; DNA Damage; Doxorubicin; Female; Flavonoids; Humans; Olive Oil; Phenols; Plant Oils; Polymers; Rats; Reactive Oxygen Species; Selenium; Ubiquinone; Vitamin A; Vitamin E | 2002 |
5 other study(ies) available for curcumin and Cardiomyopathies
Article | Year |
---|---|
The protective effect of curcumin on cardiac markers and fibrosis in abemaciclib-induced cardiac damage in rats.
Abemaciclib (ABE) is a cyclin-dependent kinase inhibitor used in combination with an antiestrogen in the treatment of breast cancer. In addition to the important therapeutic properties of this drug, its side effects are not fully known. In this study, we aimed to investigate the protective effect of curcumin (CUR) on cardiac damage caused by ABE administration. Forty rats were equally divided into control, dimethyl sulfoxide (150 µL), CUR (30 mg/kg/day), ABE (26 mg/kg/day), and ABE + CUR (26 mg/kg/day ABE and 30mg/kg/day CUR) groups (n = 8). Injections were administered daily for 28 days. Troponin-I, total cholesterol, and creatine kinase myocardial band (CK-MB) levels and cardiac fibrosis were higher in the ABE group than in the control group (p < 0.05), and were lower in the ABE + CUR group than in the ABE group (p < 0.05). The results showed that ABE administration can cause cardiac damage and increase cardiac fibrosis. However, they showed that coadministration of CUR with ABE could suppress increases in CK-MB, troponin-I, and total cholesterol levels and also cardiac fibrosis associated with cardiac damage. Therefore, we can infer that the subsequent administration of CUR ABE treatment can be used as a therapeutic strategy for preventing cardiac damage. Topics: Animals; Cardiomyopathies; Cholesterol; Curcumin; Fibrosis; Rats; Troponin I | 2023 |
Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation.
Acute myocardial dysfunction in patients with sepsis is attributed to oxidative stress, inflammation, and cardiomyocyte loss; however, specific drugs for its prevention are still lacking. Tetrahydrocurcumin (THC) has been proven to contribute to the prevention of various cardiovascular diseases by decreasing oxidative stress and inflammation. This study was performed to investigate the functions and mechanism of action of THC in septic cardiomyopathy.. After the oral administration of THC (120 mg/kg) for 5 consecutive days, a mouse model of sepsis was established via intraperitoneal lipopolysaccharide (LPS, 10 mg/kg) injection. Following this, cardiac function was assessed, pathological section staining was performed, and inflammatory markers were detected.. Myocardial systolic function was severely compromised in parallel with the accumulation of reactive oxygen species and enhanced cardiomyocyte apoptosis in mice with sepsis. These adverse changes were markedly reversed in response to THC treatment in septic mice as well as in LPS-treated H9c2 cells. Mechanistically, THC inhibited the release of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6, by upregulating mitogen-activated protein kinase phosphatase 1, to block the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK). Additionally, THC enhanced the levels of antioxidant proteins, including nuclear factor-erythroid 2-related factor 2, superoxide dismutase 2, and NAD(P)H quinone oxidoreductase 1, while decreasing gp91. Our findings indicate that THC exhibited protective potential against septic cardiomyopathy by reducing oxidative stress and inflammation through the regulation of JNK/ERK signaling. The findings of this study provide a basis for the further evaluation of THC as a therapeutic agent against septic cardiomyopathy. Topics: Animals; Cardiomyopathies; Curcumin; Inflammation; Lipopolysaccharides; MAP Kinase Signaling System; Mice; Oxidative Stress; Sepsis | 2022 |
Anti-inflammatory Activity of Curcumin in Gel Carriers on Mice with Atrial Edema.
Curcumin is a bioactive compound with proven antioxidant and anti-inflammatory activities, but has low water solubility and dermal absorption. The inflammatory process is considered as the biological response to damage induced by various stimuli. If this process fails to self-regulate, it becomes a potential risk of cancer. The objective of this work was to evaluate the anti-inflammatory activity of curcumin administered to mice with induced atrial edema using two topical vehicles: organogels and O/W-type nanogels at pH 7, Organogels and O/W-type nanogels at pH 7 were prepared, characterized and the anti-inflammatory activity was assessed. A histopathological analysis of mouse ears was performed and two gel formulations were selected. Thermograms of organogels indicated that increasing the gelling agent improved the stability of the system. Deformation sweeps confirmed a viscoelastic behavior characteristic of gels in both systems. During the anti-inflammatory activity evaluations, the nanogels demonstrated greater activity (61.8 %) than organogels; Diclofenac Topics: Animals; Anti-Inflammatory Agents; Cardiomyopathies; Curcumin; Drug Carriers; Edema; Gels; Heart Atria; Mice; Phytotherapy | 2020 |
A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy.
Acquired chemotherapy resistance is a major contributor to treatment failure in oncology. For example, the efficacy of the common anticancer agent doxorubicin (DOX) is limited by the emergence of multidrug resistance (MDR) phenotype in cancer cells. While dose escalation of DOX can circumvent such resistance to a degree, this is precluded by the appearance of cardiotoxicity, a particularly debilitating condition in children. In vitro studies have established the ability of the natural phytochemical curcumin to overcome MDR; however, its widespread clinical application is restricted by poor solubility and low bioavailability. Building upon our recently developed polymer nanoparticle of curcumin (NanoCurc or NC) that significantly enhances the systemic bioavailability of curcumin, we synthesized a doxorubicin-curcumin composite nanoparticle formulation called NanoDoxCurc (NDC) for overcoming DOX resistance. Compared to DOX alone, NDC inhibited the MDR phenotype and caused striking growth inhibition both in vitro and in vivo in several models of DOX-resistant cancers (multiple myeloma, acute leukemia, prostate and ovarian cancers, respectively). Notably, NDC-treated mice also demonstrated complete absence of cardiac toxicity, as assessed by echocardiography, or any bone marrow suppression, even at cumulative dosages where free DOX and pegylated liposomal DOX (Doxil®) resulted in demonstrable attenuation of cardiac function and hematological toxicities. This improvement in safety profile was achieved through a reduction of DOX-induced intracellular oxidative stress, as indicated by total glutathione levels and glutathione peroxidase activity in cardiac tissue. A composite DOX-curcumin nanoparticle that overcomes both MDR-based DOX chemoresistance and DOX-induced cardiotoxicity holds promise for providing lasting and safe anticancer therapy. Topics: Animals; Antibiotics, Antineoplastic; Cardiomyopathies; Cell Line, Tumor; Curcumin; Doxorubicin; Drug Resistance, Neoplasm; Glutathione; Humans; Male; Mice; Mice, Nude; Multiple Myeloma; Nanoparticles; Prostatic Neoplasms; Random Allocation; Xenograft Model Antitumor Assays | 2012 |
Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition.
Curcumin, a natural polyphenolic compound, has been shown to reduce cardiomyocyte growth. Angiotensin II type 1 receptor (AT1R) and lectin-like oxidized low density lipoprotein (ox-LDL) receptor-1 (LOX-1) are major stimuli for cardiomyocyte growth via activation of oxidant signals. We postulated that curcumin may reduce Ang II-mediated cardiomyocyte growth via AT1R and LOX-1 inhibition.. Adult mouse cardiomyocytes (HL-1) were incubated overnight in serum-free medium, and then treated with solvents or curcumin, the AT1R inhibitor losartan or anti-LOX-1 antibody for 3 hours, and the cells were then stimulated with Ang II. We measured cardiomyocyte growth, and associated intracellular redox signals using reverse transcriptase-polymerase chain reaction and quantitative real-time RT-PCR. We also examined the effect of curcumin on cardiomyocyte biology with forced overexpression of LOX-1 gene.. Curcumin (5-10 microM), losartan, and anti-LOX-1 antibody markedly attenuated Ang II-mediated oxidant stress, and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and nuclear factor-kappaB (NF-kappaB). Attenuation of redox state by curcumin resulted in abrogation of Ang II-mediated cardiomyocyte growth and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) genes. Curcumin also reduced Ang II-mediated upregulation of AT1R and LOX-1. The forced upregulation of LOX-1 enhanced the expression of genes for AT1R, ANP, and BNP, and curcumin pretreatment reduced LOX-1 and AT1R expression and LOX-1-mediated increase in hypertrophy markers.. Curcumin attenuates Ang II-mediated cardiomyocyte growth by inhibiting LOX-1 and AT1R expression and suppressing the heightened intracellular redox state. Topics: Angiotensin II; Animals; Cardiomyopathies; Cell Enlargement; Cells, Cultured; Curcumin; Growth Inhibitors; Mice; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Scavenger Receptors, Class E | 2010 |