curcumin has been researched along with Carcinoma--Adenoid-Cystic* in 2 studies
2 other study(ies) available for curcumin and Carcinoma--Adenoid-Cystic
Article | Year |
---|---|
Successful treatment of c-kit-positive metastatic Adenoid Cystic Carcinoma (ACC) with a combination of curcumin plus imatinib: A case report.
Adenoid cystic carcinoma (ACC) is an aggressive malignant neoplasm of the secretory glands. Conventional chemotherapy has poor effectiveness against metastatic ACC. Thus, a novel effective therapy is needed against metastatic ACC. A majority of ACCs (up to 94%) express c-kit. Imatinib is monoclonal antibody with specific activity against c-kit but has not been found to be effective in treating patients with ACC in which c-kit is overexpressed and activated. The NF-κB and mTOR pathways have been shown that ubiquitously and concurrently activated, indicating that the inhibition of these pathways may represent a novel treatment approach for patients with ACC. Curcumin has been shown to inhibit NF-κB and NF-κB-related pathways. 43-year-old patient was diagnosed ACC from submandibular salivary gland. After complete resection of tumor adjuvant radiotherapy was initiated. Seven years later multiple lung metastases were detected and ACC was confirmed by re-biopsy. First-line chemotherapy failed. NF-κB and c-kit were overexpressed in the metastatic specimens. Therefore, we treated the patient with metastatic chemoresistant ACC with imatinib 400mg/day and intravenous curcumin 225mg/m(2) twice a week plus oral bioavailable curcumin Arantal(®) 2×84mg/day. At 24 months, we observed near complete anatomic and complete metabolic response. To our knowledge, this is the first report of a patient with a c-kit-positive ACC that is successfully treated with the combination of imatinib and curcumin in an integrative approach. Topics: Antineoplastic Agents; Carcinoma, Adenoid Cystic; Curcumin; Drug Therapy, Combination; Humans; Imatinib Mesylate; Male; Middle Aged; Proto-Oncogene Proteins c-kit | 2016 |
Curcumin dually inhibits both mammalian target of rapamycin and nuclear factor-κB pathways through a crossed phosphatidylinositol 3-kinase/Akt/IκB kinase complex signaling axis in adenoid cystic carcinoma.
Adenoid cystic carcinoma (ACC) is a highly malignant tumor that is generally unresponsive or only weakly responsive to the currently available antineoplastic agents. Thus, novel therapeutic strategies and agents are urgently needed to treat this aggressive neoplasm. Curcumin, a component of turmeric (Curcuma longa), has been shown to have a diversity of antitumor activities. We show here that curcumin is a potent inhibitor of ACC progression in vitro and in vivo. Curcumin concentration-dependently inhibited the growth of ACC cells via induction of apoptosis. The ability of ACC cells to migrate/invade and induce angiogenesis was also significantly attenuated by curcumin, accompanied by the down-regulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 and -9. Moreover, our data also demonstrated that the inhibitory effects of curcumin on ACC cells were due to its dual inhibition of both mammalian target of rapamycin (mTOR) and nuclear factor-κB (NF-κB) pathways through a crossed phosphatidylinositol 3-kinase/Akt/IκBα kinase signaling axis. Most importantly, curcumin effectively prevented the in vivo growth and angiogenesis of ACC xenografts in nude mice, as revealed by the induction of cell apoptosis and reduction of microvessel density in tumor tissues. In addition, we further assessed the nature activation status of both mTOR and NF-κB pathways in ACC tissues and confirmed the concurrent high activation of these two pathways in ACC for the first time. Taken together, our findings suggest that further clinical investigation is warranted to apply curcumin as a novel chemotherapeutic regimen for ACC because of its dual suppression of both mTOR and NF-κB pathways. Topics: Animals; Carcinoma, Adenoid Cystic; Cell Line; Cell Line, Tumor; Chickens; Curcumin; Female; I-kappa B Proteins; Mice; Mice, Inbred BALB C; Mice, Nude; NF-kappa B; Phosphatidylinositol 3-Kinase; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Random Allocation; Rats; Signal Transduction; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2011 |