curcumin has been researched along with Adenomatous-Polyposis-Coli* in 9 studies
1 review(s) available for curcumin and Adenomatous-Polyposis-Coli
Article | Year |
---|---|
Chemoprevention of hereditary colon cancers: time for new strategies.
Colorectal cancer (CRC) is potentially preventable. Chemoprevention, a focus of research for the past three decades, aims to prevent or delay the onset of cancer through the regression or prevention of colonic adenomas. Ideal pharmacological agents for chemoprevention should be cheap and nontoxic. Although data indicate that aspirin can reduce the risk of CRC in the general population, the highest return from chemopreventive strategies would be expected in patients with the highest risk of developing the disease, particularly those with a defined hereditary predisposition. Despite compelling data showing that a large number of chemopreventive agents show promise in preclinical CRC models, clinical studies have yielded conflicting results. This Review provides a historical and methodological perspective of chemoprevention in familial adenomatous polyposis and Lynch syndrome, and summarizes the current status of CRC chemoprevention in humans. Our goal is to critically focus on important issues of trial design, with particular attention on the choice of appropriate trial end points, how such end points should be measured, and which patients are the ideal candidates to be included in a chemopreventive trial. Topics: Adenomatous Polyposis Coli; Animals; Anticarcinogenic Agents; Antineoplastic Combined Chemotherapy Protocols; Aspirin; Chemoprevention; Clinical Trials as Topic; Colonic Neoplasms; Colorectal Neoplasms, Hereditary Nonpolyposis; Curcumin; Cyclooxygenase 2 Inhibitors; Drug Discovery; Fatty Acids, Omega-3; Humans; Mice; Randomized Controlled Trials as Topic; Rats; Sulindac | 2016 |
3 trial(s) available for curcumin and Adenomatous-Polyposis-Coli
Article | Year |
---|---|
Efficacy of Wholistic Turmeric Supplement on Adenomatous Polyps in Patients with Familial Adenomatous Polyposis-A Randomized, Double-Blinded, Placebo-Controlled Study.
Several studies have demonstrated that curcumin can cause the regression of polyps in familial adenomatous polyposis (FAP), while others have shown negative results. Wholistic turmeric (WT) containing curcumin and additional bioactive compounds may contribute to this effect. We performed a double-blinded, randomized, controlled trial to assess the efficacy of WT in FAP patients. Ten FAP patients were randomly assigned to receive either WT or placebo for 6 months. Colonoscopies were performed at baseline and after 6 months. The polyp number and size, as well as the cumulative polyp burden, were assessed. No differences were noted between the groups in terms of changes from the baseline's polyp number, size, or burden. However, stratifying the data according to the right vs. left colon indicated a decrease in the median polyp number (from 5.5 to 1.5, Topics: Adenomatous Polyposis Coli; Curcuma; Curcumin; Humans; Prospective Studies | 2022 |
Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients With Familial Adenomatous Polyposis.
Familial adenomatous polyposis is an autosomal dominant disorder characterized by the development of hundreds of colorectal adenomas and eventually colorectal cancer. Oral administration of the spice curcumin has been followed by regression of polyps in patients with this disorder. We performed a double-blinded randomized trial to determine the safety and efficacy of curcumin in patients with familial adenomatous polyposis.. This study included 44 patients with familial adenomatous polyposis (18-85 years old) who had not undergone colectomy or had undergone colectomy with ileorectal anastomosis or ileal anal pouches, had at least 5 intestinal adenomatous polyps, and had enrolled in Puerto Rico or the United States from September 2011 through November 2016. Patients were randomly assigned (1:1) to groups given 100% pure curcumin (1,500 mg orally, twice per day) or identical-appearing placebo capsules for 12 months. The number and size of lower gastrointestinal tract polyps were evaluated every 4 months for 1 year. The primary outcome was the number of polyps in the curcumin and placebo groups at 12 months or at the time of withdrawal from the study according to the intention-to-treat principle.. After 1 year of treatment, the average rate of compliance was 83% in the curcumin group and 91% in the placebo group. After 12 weeks, there was no significant difference in the mean number of polyps between the placebo group (18.6; 95% CI, 9.3-27.8) and the curcumin group (22.6; 95% CI, 12.1-33.1; P = .58). We found no significant difference in mean polyp size between the curcumin group (2.3 mm; 95% CI, 1.8-2.8) and the placebo group (2.1 mm; 95% CI, 1.5-2.7; P = .76). Adverse events were few, with no significant differences between groups.. In a double-blinded randomized trial of patients with familial adenomatous polyposis, we found no difference in the mean number or size of lower intestinal tract adenomas between patients given curcumin 3,000 mg/day and those given placebo for 12 weeks. Clinicaltrials.gov ID NCT00641147. Topics: Adenoma; Adenomatous Polyposis Coli; Adolescent; Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Colorectal Neoplasms; Curcumin; Double-Blind Method; Female; Humans; Male; Middle Aged; Treatment Outcome; Young Adult | 2018 |
Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis.
Familialadenomatous polyposis (FAP) is an autosomal-dominant disorder characterized by the development of hundreds of colorectal adenomas and eventual colorectal cancer. Regression of adenomas in this syndrome occurs with the administration of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors, but these compounds can have considerable side effects. We evaluated the efficacy of the combination of diet-derived nonprescription supplements curcumin and quercetin to regress adenomas in patients with FAP.. Five FAP patients with prior colectomy (4 with retained rectum and 1 with an ileal anal pouch) received curcumin 480 mg and quercetin 20 mg orally 3 times a day. The number and size of polyps were assessed at baseline and after therapy. The Wilcoxon signed-rank test was used to determine differences in the number and size of polyps. Treatment side effects and medication compliance also were evaluated.. All 5 patients had a decreased polyp number and size from baseline after a mean of 6 months of treatment with curcumin and quercetin. The mean percent decrease in the number and size of polyps from baseline was 60.4% (P < .05) and 50.9% (P < .05), respectively. Minimal adverse side effects and no laboratory abnormalities were noted.. The combination of curcumin and quercetin appears to reduce the number and size of ileal and rectal adenomas in patients with FAP without appreciable toxicity. Randomized controlled trials are needed to validate these findings. Topics: Adenomatous Polyposis Coli; Adult; Antineoplastic Agents; Antioxidants; Curcumin; Drug Therapy, Combination; Female; Humans; Male; Middle Aged; Quercetin; Sigmoidoscopy | 2006 |
5 other study(ies) available for curcumin and Adenomatous-Polyposis-Coli
Article | Year |
---|---|
Theracurmin inhibits intestinal polyp development in Apc-mutant mice by inhibiting inflammation-related factors.
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Therefore, it is important to establish useful methods for preventing CRC. One prevention strategy involves the use of cancer chemopreventive agents, including functional foods. We focused on the well-known cancer chemopreventive agent curcumin, which is derived from turmeric. However, curcumin has the disadvantage of being poorly soluble in water due to its high hydrophobicity. To overcome this problem, the formation of submicron particles with surface controlled technology has been applied to curcumin to give it remarkably improved water solubility, and this derived compound is named Theracurmin. To date, the preventive effects of Theracurmin on hereditary intestinal carcinogenesis have not been elucidated. Thus, we used Apc-mutant mice, a model of familial adenomatous polyposis, to evaluate the effects of Theracurmin. First, we showed that treatment with 10-20 µM Theracurmin for 24 hours reduced nuclear factor-κB (NF-κB) transcriptional activity in human colon cancer DLD-1 and HCT116 cells. However, treatment with curcumin mixed in water did not change the NF-κB promoter transcriptional activity. As NF-κB is a regulator of inflammation-related factors, we next investigated the downstream targets of NF-κB: monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6. We found that treatment with 500 ppm Theracurmin for 8 weeks inhibited intestinal polyp development and suppressed MCP-1 and IL-6 mRNA expression levels in the parts of the intestine with polyps. This report provides a proof of concept for the ongoing Theracurmin human trial (J-CAP-C study). Topics: Adenomatous Polyposis Coli; Adenomatous Polyposis Coli Protein; Animals; Carcinogenesis; Chemokine CCL2; Colorectal Neoplasms; Curcumin; Disease Models, Animal; Gene Expression Regulation, Neoplastic; HCT116 Cells; Humans; Inflammation; Interleukin-6; Intestinal Polyps; Intestines; Mice; NF-kappa B | 2020 |
Chemoprevention with special reference to inherited colorectal cancer.
Familial Adenomatous Polyposis (FAP) is a model for the adenoma-carcinoma sequence in several respects. One important area in which FAP serves as a model is chemoprevention. Early prevention trials mainly utilized micronutrients and were largely unsuccessful in preventing or causing regression of adenomas. A new era was ushered in by the recognition that antiarthritic doses of a nonsteroidal anti-inflammatory agent (NSAID), sulindac, could actually induce regression of colorectal adenomas in patients with FAP. Follow-up studies showed positive but variable long-term efficacy for colorectal adenomas, but sulindac appears to lack significant benefit in regressing duodenal adenomas or preventing initial occurrence of adenomas in APC mutation carriers. Due to the well-known side effects of traditional NSAIDs, selective COX-2 inhibitors have been studied rather extensively. Celecoxib has shown benefit in regressing colorectal adenomas and appears to have some duodenal activity as well. Rofecoxib, in smaller trials, showed efficacy as well. However, the entire field of NSAID research in chemoprevention is undergoing reexamination in light of recent demonstration of cardiovascular toxicity in nonfamilial or sporadic adenoma prevention trials. Whether NSAIDs will have a significant future in FAP chemoprevention will depend on a sober assessment of risks and benefits. These same issues will likely foster a more intensive search for new agents. FAP will undoubtedly continue to have a lead role in the testing of new agents, both in the interest of FAP management as such, and in anticipation of trials in nonfamilial adenomas, a problem with even greater societal impact. The historical development of chemoprevention in FAP will be presented, with an emphasis on issues of trial design. Topics: Adenomatous Polyposis Coli; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Ascorbic Acid; Celecoxib; Chemoprevention; Clinical Trials as Topic; Colorectal Neoplasms; Curcumin; Cyclooxygenase 2 Inhibitors; Drug Therapy, Combination; Eflornithine; Humans; Lactones; Pyrazoles; Sulfonamides; Sulfones; Sulindac; Vitamins | 2008 |
Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: modification by dietary curcumin and implications for clinical trials.
The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development. Topics: Adenomatous Polyposis Coli; Analysis of Variance; Animals; Blotting, Western; Curcumin; Cyclooxygenase 2; DNA Adducts; Mice; Mice, Inbred C57BL | 2006 |
Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis.
Curcumin, the major yellow pigment in turmeric, prevents the development of adenomas in the intestinal tract of the C57Bl/6J Min/+ mouse, a model of human familial APC. To aid the rational development of curcumin as a colorectal cancer-preventive agent, we explored the link between its chemopreventive potency in the Min/+ mouse and levels of drug and metabolites in target tissue and plasma. Mice received dietary curcumin for 15 weeks, after which adenomas were enumerated. Levels of curcumin and metabolites were determined by high-performance liquid chromatography in plasma, tissues, and feces of mice after either long-term ingestion of dietary curcumin or a single dose of [(14)C]curcumin (100 mg/kg) via the i.p. route. Whereas curcumin at 0.1% in the diet was without effect, at 0.2 and 0.5%, it reduced adenoma multiplicity by 39 and 40%, respectively, compared with untreated mice. Hematocrit values in untreated Min/+ mice were drastically reduced compared with those in wild-type C57Bl/6J mice. Dietary curcumin partially restored the suppressed hematocrit. Traces of curcumin were detected in the plasma. Its concentration in the small intestinal mucosa, between 39 and 240 nmol/g of tissue, reflects differences in dietary concentration. [(14)C]Curcumin disappeared rapidly from tissues and plasma within 2-8 h after dosing. Curcumin may be useful in the chemoprevention of human intestinal malignancies related to Apc mutations. The comparison of dose, resulting curcumin levels in the intestinal tract, and chemopreventive potency suggests tentatively that a daily dose of 1.6 g of curcumin is required for efficacy in humans. A clear advantage of curcumin over nonsteroidal anti-inflammatory drugs is its ability to decrease intestinal bleeding linked to adenoma maturation. Topics: Adenoma; Adenomatous Polyposis Coli; Administration, Oral; Animals; Antineoplastic Agents; Colonic Neoplasms; Curcumin; Disease Models, Animal; Gastrointestinal Hemorrhage; Genes, APC; Genetic Predisposition to Disease; Hematocrit; Male; Mice; Mice, Inbred C57BL; Point Mutation; Tissue Distribution | 2002 |
Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype.
Colonic epithelial cell migration is required for normal differentiated cell function. This migratory phenotype is dependent upon wild-type adenomatous polyposis coli (Apc) expression. Non-tumorigenic murine colon epithelial cell lines with distinct Apc genotypes, i.e. young adult mouse colon (YAMC; Apc(+/+)) and immortomouse/Min colon epithelial (IMCE; Apc(Min/+) cells) were used to assess the association between the Apc genotype, cell motility and matrix metalloproteinase (MMP) activity. Cells were treated with epidermal growth factor (EGF; 1, 10 and 25 ng/ml), hepatocyte growth factor (HGF; 1, 10 and 25 ng/ml) and/or curcumin (0.1-100 microM). EGF (25 ng/ml) and HGF (25 ng/ml) induced a greater migratory response in YAMC compared with IMCE cells after 24 h (P < 0.05). Treatment with curcumin induced a greater or equivalent migratory response in IMCE than YAMC cells. When migrating cells were treated with Ilomastat (MMP inhibitor), migration was inhibited in both cell types. High concentrations of Ilomastat (25 and 50 microM) inhibited migration in both cell types, while low concentrations (10 microM) inhibited HGF-induced IMCE migration. Curcumin-induced migration was inhibited in both cell types at the highest concentration of Ilomastat (50 microM). Immuno-localization analysis of membrane type-1 (MT1)-MMP indicated that migration is associated with the redistribution of this protein from the endoplasmic reticulum to the plasma membrane. Addition of neutralizing polyclonal antibodies against MT1-MMP or a mixture of MT1, 2- and 3-MMPs demonstrated partial or complete inhibition of cell migration in both cell types, respectively. The data provide the first evidence that migration in non-tumorigenic murine colon epithelial cells is: (i) inducible by EGF and HGF in an Apc genotype-dependent manner, (ii) dependent on MT-MMP activity and (iii) inducible by curcumin in an Apc genotype-independent manner. The data suggest a potential mechanism by which curcumin may induce cells heterozygous for Apc to overcome defective cell migration, a phenotype associated with cell differentiation and apoptosis. Topics: Adenomatous Polyposis Coli; Animals; Antineoplastic Agents; Cell Movement; Cells, Cultured; Colon; Curcumin; Epidermal Growth Factor; Gelatinases; Genes, APC; Genotype; Hepatocyte Growth Factor; Hydroxamic Acids; Indoles; Intestinal Mucosa; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; Mice; Protease Inhibitors | 2002 |