curcumin has been researched along with Adenoma* in 11 studies
1 review(s) available for curcumin and Adenoma
Article | Year |
---|---|
Synergistic role of curcumin with current therapeutics in colorectal cancer: minireview.
Despite the use of surgical resection and aggressive chemotherapy, nearly 50% of patients with colorectal carcinoma develop recurrent disease, highlighting the need for improved therapies. Curcumin (diferuloylmethane), the major active ingredient of turmeric (curcuma longa) with no discernable toxicity, has been shown to inhibit the growth of transformed cells and colon carcinogenesis at the initiation, promotion, and progression stages in carcinogen-induced rodent models. In a Phase I clinical trial, curcumin has been found to be extremely well tolerated and effective. In this review, we summarized the current status of our knowledge about the effectiveness of curcumin when given in combination with current chemotherapeutics such as 5-fluorouracil, oxaliplatin, and gemcitabine in treatment of gastrointestinal cancers with particular reference to colorectal cancer. Existing data suggest that curcumin in combination with chemotherapy is a superior strategy for treatment of gastrointestinal cancer. Topics: Adenoma; Animals; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Carcinoma; Colorectal Neoplasms; Curcumin; Deoxycytidine; Fluorouracil; Gastrointestinal Neoplasms; Gemcitabine; Humans; Organoplatinum Compounds; Oxaliplatin; Treatment Outcome | 2009 |
2 trial(s) available for curcumin and Adenoma
Article | Year |
---|---|
Inflammatory and Metabolic Biomarker Assessment in a Randomized Presurgical Trial of Curcumin and Anthocyanin Supplements in Patients with Colorectal Adenomas.
Colorectal cancer prevention is crucial for public health, given its high mortality rates, particularly in young adults. The early detection and treatment of precancerous lesions is key to preventing carcinogenesis progression. Natural compounds like curcumin and anthocyanins show promise in impeding adenomatous polyp progression in preclinical models. We conducted a randomized, double-blind, placebo-controlled, phase II presurgical trial in 35 patients with adenomatous polyps to explore the biological effects of curcumin and anthocyanins on circulating biomarkers of inflammation and metabolism. No significant difference in biomarker changes by treatment arm was observed. However, the network analysis before treatment revealed inverse correlations between adiponectin and BMI and glycemia, as well as direct links between inflammatory biomarkers and leptin and BMI. In addition, a considerable inverse relationship between adiponectin and grade of dysplasia was detected after treatment (corr = -0.45). Finally, a significant increase in IL-6 at the end of treatment in subjects with high-grade dysplasia was also observed ( Topics: Adenoma; Adiponectin; Anthocyanins; Biomarkers; Carcinogenesis; Colorectal Neoplasms; Curcumin; Humans; Hyperplasia; Inflammation; Young Adult | 2023 |
Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients With Familial Adenomatous Polyposis.
Familial adenomatous polyposis is an autosomal dominant disorder characterized by the development of hundreds of colorectal adenomas and eventually colorectal cancer. Oral administration of the spice curcumin has been followed by regression of polyps in patients with this disorder. We performed a double-blinded randomized trial to determine the safety and efficacy of curcumin in patients with familial adenomatous polyposis.. This study included 44 patients with familial adenomatous polyposis (18-85 years old) who had not undergone colectomy or had undergone colectomy with ileorectal anastomosis or ileal anal pouches, had at least 5 intestinal adenomatous polyps, and had enrolled in Puerto Rico or the United States from September 2011 through November 2016. Patients were randomly assigned (1:1) to groups given 100% pure curcumin (1,500 mg orally, twice per day) or identical-appearing placebo capsules for 12 months. The number and size of lower gastrointestinal tract polyps were evaluated every 4 months for 1 year. The primary outcome was the number of polyps in the curcumin and placebo groups at 12 months or at the time of withdrawal from the study according to the intention-to-treat principle.. After 1 year of treatment, the average rate of compliance was 83% in the curcumin group and 91% in the placebo group. After 12 weeks, there was no significant difference in the mean number of polyps between the placebo group (18.6; 95% CI, 9.3-27.8) and the curcumin group (22.6; 95% CI, 12.1-33.1; P = .58). We found no significant difference in mean polyp size between the curcumin group (2.3 mm; 95% CI, 1.8-2.8) and the placebo group (2.1 mm; 95% CI, 1.5-2.7; P = .76). Adverse events were few, with no significant differences between groups.. In a double-blinded randomized trial of patients with familial adenomatous polyposis, we found no difference in the mean number or size of lower intestinal tract adenomas between patients given curcumin 3,000 mg/day and those given placebo for 12 weeks. Clinicaltrials.gov ID NCT00641147. Topics: Adenoma; Adenomatous Polyposis Coli; Adolescent; Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Colorectal Neoplasms; Curcumin; Double-Blind Method; Female; Humans; Male; Middle Aged; Treatment Outcome; Young Adult | 2018 |
8 other study(ies) available for curcumin and Adenoma
Article | Year |
---|---|
Targeted nanogel conjugate for improved stability and cellular permeability of curcumin: synthesis, pharmacokinetics, and tumor growth inhibition.
Curcumin (CUR) is a unique natural compound with promising anticancer and anti-inflammatory activities. However, the therapeutic efficacy of curcumin was challenged in clinical trials, mostly due to its low bioavailability, rapid metabolism, and elimination. We designed a nanodrug form of curcumin, which makes it stable and substantially enhances cellular permeability and anticancer activity at standard oral administration. Curcumin was conjugated as an ester to cholesteryl-hyaluronic acid (CHA) nanogel that is capable of targeted delivery to CD44-expressing drug-resistant cancer cells. CHA-CUR nanogels demonstrated excellent solubility and sustained drug release in physiological conditions. It induced apoptosis in cancer cells, suppressing the expression of NF-κB, TNF-α, and COX-2 cellular targets similar to free curcumin. Pharmacokinetic/pharmacodynamic (PK/PD) studies also revealed improved circulation parameters of CHA-CUR at oral, i.p. and i.v. administration routes. CHA-CUR showed targeted tumor accumulation and effective tumor growth inhibition in human pancreatic adenocarcinoma MiaPaCa-2 and aggressive orthotropic murine mammary carcinoma 4T1 animal models. CHA-CUR treatment was well-tolerated and resulted in up to 13-fold tumor suppression, making this nanodrug a potential candidate for cancer prevention and therapeutic treatment. Topics: Adenoma; Administration, Oral; Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Curcumin; Cyclooxygenase 2; Delayed-Action Preparations; Drug Delivery Systems; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Esters; Female; Humans; Hyaluronan Receptors; Hyaluronic Acid; Mammary Neoplasms, Animal; Mice; Mice, Inbred BALB C; Mice, Nude; Nanogels; NF-kappa B; Pancreatic Neoplasms; Permeability; Polyethylene Glycols; Polyethyleneimine; Solubility; Tumor Necrosis Factor-alpha | 2014 |
Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas.
Curcumin (diferuloylmethane), a polyphenolic compound derived from the spice plant Curcuma longa, displays multiple actions on solid tumours including anti-angiogenic effects. Here we have studied in rodent and human pituitary tumour cells the influence of curcumin on the production of hypoxia inducible factor 1α (HIF1A) and vascular endothelial growth factor A (VEGFA), two key components involved in tumour neovascularisation through angiogenesis. Curcumin dose-dependently inhibited basal VEGFA secretion in corticotroph AtT20 mouse and lactosomatotroph GH3 rat pituitary tumour cells as well as in all human pituitary adenoma cell cultures (n=32) studied. Under hypoxia-mimicking conditions (CoCl(2) treatment) in AtT20 and GH3 cells as well as in all human pituitary adenoma cell cultures (n=8) studied, curcumin strongly suppressed the induction of mRNA synthesis and protein production of HIF1A, the regulated subunit of the hypoxia-induced transcription factor HIF1. Curcumin also blocked hypoxia-induced mRNA synthesis and secretion of VEGFA in GH3 cells and in all human pituitary adenoma cell cultures investigated (n=18). Thus, curcumin may inhibit pituitary adenoma progression not only through previously demonstrated anti-proliferative and pro-apoptotic actions but also by its suppressive effects on pituitary tumour neovascularisation. Topics: Adenoma; Animals; Antineoplastic Agents; Cell Hypoxia; Cell Line, Tumor; Corticotrophs; Curcumin; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Lactotrophs; Mice; Neovascularization, Pathologic; Pituitary Neoplasms; Rats; RNA, Messenger; Somatotrophs; Vascular Endothelial Growth Factor A | 2012 |
The influence of curcumin, quercetin, and eicosapentaenoic acid on the expression of phase II detoxification enzymes in the intestinal cell lines HT-29, Caco-2, HuTu 80, and LT97.
Curcumin, quercetin, and eicosapentaenoic acid (EPA) are 3 natural compounds with the capacity to reduce adenoma burden in patients with familial adenomatous polyposis (FAP). The mechanistic basis of this anticarcinogenic capacity is largely unknown, but it was suggested that induction of detoxification enzymes is involved. Therefore, the effects of low-dose curcumin, quercetin, and EPA on phase II detoxification enzymes UDP-glucuronosyltransferase (UGT), glutathione S-transferase (GST), as well as on glutathione (GSH) content were analyzed in 4 cell line models of intestinal carcinogenesis. HT-29, HuTu 80, and Caco-2 intestinal cancer cells and LT97 colon adenoma cells from a patient with FAP were treated with low-dose noncytotoxic concentrations of curcumin, quercetin, and EPA. GST enzyme activity was measured by spectrophotometry, and expression of GSTA1, GSTM1, GSTP1, GSTT1, and UGT1 by Western blotting. Cytosolic GSH levels were determined by high performance liquid chromatography. An inducing effect of curcumin and quercetin on GST or UGT was seen in Caco-2, LT97, and HuTu 80 cells. GSH levels were reduced by quercetin and EPA in HT-29 cells and induced by curcumin in Caco-2 cells. In LT97 cells, GST activity and expression was reduced, but UGT1 expression was induced by curcumin and quercetin; whereas EPA only decreased GST or UGT levels. In summary, enhancement of the detoxification capacity by low dose of the potential anticarcinogens curcumin, quercetin, or EPA seems only a minor factor in explaining their anticarcinogenic properties. Topics: Adenoma; Caco-2 Cells; Cell Line; Colonic Neoplasms; Curcumin; Dose-Response Relationship, Drug; Eicosapentaenoic Acid; Glucuronosyltransferase; Glutathione; Glutathione Transferase; HT29 Cells; Humans; Intestinal Neoplasms; Metabolic Detoxication, Phase II; Quercetin | 2012 |
Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells.
Colorectal cancer is the third most common form of malignancy, behind prostate and lung cancers. Despite recent advances in medicine, mortality from colorectal cancer remains high, highlighting the need for improved therapies. Numerous studies have demonstrated increased activation of EGFR and its family members (EGFRs), IGF-1R as well as c-Src in colorectal cancer. The current study was undertaken to examine the effectiveness of combination therapy of dasatinib (BMS-354825; Bristol-Myers Squibb), a highly specific inhibitor of Src family kinases (SFK) and a nontoxic dietary agent; curcumin (diferuloylmethane), in colorectal cancer in in vitro and in vivo experimental models. For the latter, we utilized C57BL/6 APC(Min+/-) mice. Initial in vitro studies revealed synergistic interactions between the two agents. Additionally, we have observed that combination treatment causes a much greater inhibition of the following metastatic processes than either agent alone: (i) colony formation, (ii) invasion through extracellular matrix and (iii) tubule formation by endothelial cells. Dasatinib affects the cell adhesion phenotype of colon cancer HCT-116 cells whereas the combination therapy enhances this effect to a greater extent. Preclinical investigation revealed that the combination therapy to be highly effective causing an over 95% regression of intestinal adenomas in Apc(Min+/-) mice, which could be attributed to decreased proliferation and increased apoptosis. In conclusion, our data suggest that combination treatment of dasatinib and curcumin could be a potential therapeutic strategy for colorectal cancer. Topics: Adenoma; Adenomatous Polyposis Coli Protein; Animals; Antineoplastic Agents; Blotting, Western; Cell Adhesion; Cell Movement; Cell Proliferation; Cell Transformation, Neoplastic; Cells, Cultured; Colonic Neoplasms; CSK Tyrosine-Protein Kinase; Curcumin; Dasatinib; Drug Synergism; Electrophoretic Mobility Shift Assay; Endothelium, Vascular; ErbB Receptors; Female; Humans; Immunoenzyme Techniques; Intestinal Neoplasms; Mice; Mice, Knockout; Neoplasm Invasiveness; Neovascularization, Pathologic; NF-kappa B; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrimidines; Receptor, IGF Type 1; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; src-Family Kinases; Thiazoles; Umbilical Veins | 2011 |
Newly synthesized curcumin analog has improved potential to prevent colorectal carcinogenesis in vivo.
Curcumin (diferuloylmethane) has chemopreventive and chemotherapeutic potentials against various types of cancers. We have developed a series of curcumin analogs to improve its low bioavailability by enhancing its potentials. The newly synthesized analog GO-Y030 [(1E, 4E)-1,5-bis-(3,5(-bismethoxymethoxyphenyl) penta-1,4-dien-3-one] showed a 30-fold greater growth suppression in vitro via similar molecular mechanisms to curcumin. The availability of this analog was examined by using a mouse model harboring the germ-line mutation of Apc, Apc(580D/+), in vivo. Apc(580D/+) mice had a very limited survival time with an intestinal obstruction due to polyposis. The average tumor number in mice fed GO-Y030 was reduced to 61.2% of those that were fed the basal diet (P < 0.05). Compared with Apc(580D/+) mice fed the basal diet (median survival time = 166.5 days), a significantly prolonged lifespan (213 days) was observed in Apc(580D/+) mice fed GO-Y030. The chemopreventive effect with GO-Y030 was improved, compared with curcumin (191 days). The survival benefit corresponded to the diminished intestinal tumor incidence in Apc(580D/+) mice fed GO-Y030. No adverse reactions were observed, judging from body weight or biochemical data concerning liver and renal damage. Degradation of accumulated beta-catenin with curcumin is one of the major mechanisms of chemoprevention in colorectal carcinogenesis. It was demonstrated that the number of beta-catenin-positive adenoma cells in Apc(580D/+) mice fed GO-Y030 was reduced. Topics: Adenoma; Animals; Benzene Derivatives; beta Catenin; Cell Transformation, Neoplastic; Colorectal Neoplasms; Curcumin; Disease Models, Animal; Genetic Predisposition to Disease; Ketones; Mice; Molecular Structure; Survival Rate | 2009 |
Age-related difference in susceptibility of Apc(Min/+) mice towards the chemopreventive efficacy of dietary aspirin and curcumin.
The nonsteroidal anti-inflammatory drug aspirin and the spice curcumin retard adenoma formation when administered long-term to Apc(Min/+) mice, a model of human familial adenomatous polyposis coli. Both agents interfere with cyclooxygenase activity. When aspirin is administered to Apc(Min/+) mice only postweaning, but not before, it is inefficacious, while curcumin given postweaning is active. Here the hypothesis was tested that dietary aspirin (0.05%) or curcumin (0.2%) prevent or delay adenoma formation in offsprings when administered to Apc(Min/+) mothers and up to the end of weaning, but not afterwards. Whereas curcumin was without effect when administered in this way, aspirin reduced numbers of intestinal adenomas by 21%. When aspirin given up to the end of weaning was combined with curcumin administered from the end of weaning for the rest of the animals' lifetime, intestinal adenoma numbers were reduced by 38%. The combination was not superior to intervention postweaning with curcumin alone. These results show that aspirin exerts chemopreventive activity in the Apc(Min/+) mouse during tumour initiation/early promotion, while curcumin is efficacious when given at a later stage of carcinogenic progression. Thus, the results suggest that in this mouse model aspirin and curcumin act during different 'windows' of neoplastic development. Topics: Adenoma; Administration, Oral; Aging; Animals; Anticarcinogenic Agents; Aspirin; Curcumin; Female; Genes, APC; Genetic Predisposition to Disease; Humans; Intestinal Neoplasms; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic | 2003 |
Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis.
Curcumin, the major yellow pigment in turmeric, prevents the development of adenomas in the intestinal tract of the C57Bl/6J Min/+ mouse, a model of human familial APC. To aid the rational development of curcumin as a colorectal cancer-preventive agent, we explored the link between its chemopreventive potency in the Min/+ mouse and levels of drug and metabolites in target tissue and plasma. Mice received dietary curcumin for 15 weeks, after which adenomas were enumerated. Levels of curcumin and metabolites were determined by high-performance liquid chromatography in plasma, tissues, and feces of mice after either long-term ingestion of dietary curcumin or a single dose of [(14)C]curcumin (100 mg/kg) via the i.p. route. Whereas curcumin at 0.1% in the diet was without effect, at 0.2 and 0.5%, it reduced adenoma multiplicity by 39 and 40%, respectively, compared with untreated mice. Hematocrit values in untreated Min/+ mice were drastically reduced compared with those in wild-type C57Bl/6J mice. Dietary curcumin partially restored the suppressed hematocrit. Traces of curcumin were detected in the plasma. Its concentration in the small intestinal mucosa, between 39 and 240 nmol/g of tissue, reflects differences in dietary concentration. [(14)C]Curcumin disappeared rapidly from tissues and plasma within 2-8 h after dosing. Curcumin may be useful in the chemoprevention of human intestinal malignancies related to Apc mutations. The comparison of dose, resulting curcumin levels in the intestinal tract, and chemopreventive potency suggests tentatively that a daily dose of 1.6 g of curcumin is required for efficacy in humans. A clear advantage of curcumin over nonsteroidal anti-inflammatory drugs is its ability to decrease intestinal bleeding linked to adenoma maturation. Topics: Adenoma; Adenomatous Polyposis Coli; Administration, Oral; Animals; Antineoplastic Agents; Colonic Neoplasms; Curcumin; Disease Models, Animal; Gastrointestinal Hemorrhage; Genes, APC; Genetic Predisposition to Disease; Hematocrit; Male; Mice; Mice, Inbred C57BL; Point Mutation; Tissue Distribution | 2002 |
Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice.
Curcumin (diferuloylmethane), a yellow pigment that is obtained from the rhizomes of Curcuma longa Linn., is a major component of turmeric and is commonly used as a spice and food-coloring agent. The inhibitory effects of feeding commercial grade curcumin (77% curcumin, 17% demethoxycurcumin, and 3% bisdemethoxycurcumin) in AIN 76A diet on carcinogen-induced tumorigenesis in the forestomach, duodenum, and colon of mice were evaluated. Administration p.o. of commercial grade curcumin in the diet inhibited benzo(a)pyrene-induced forestomach tumorigenesis in A/J mice, N-ethyl-N'-nitro-N-nitrosoguanidine-induced duodenal tumorigenesis in C57BL/6 mice, and azoxymethane (AOM)-induced colon tumorigenesis in CF-1 mice. Dietary commercial grade curcumin was given to mice at: (a) 2 weeks before, during, and for 1 week after carcinogen administration (during the initiation period); (b) 1 week after carcinogen treatment until the end of the experiment (during the postinitiation period); or (c) during both the initiation and postinitiation periods. Feeding 0.5-2.0% commercial grade curcumin in the diet decreased the number of benzo(a)pyrene-induced forestomach tumors per mouse by 51-53% when administered during the initiation period and 47-67% when administered during the postinitiation period. Feeding 0.5-2.0% commercial grade curcumin in the diet decreased the number of N-ethyl-N'-nitro-N-nitrosoguanidine-induced duodenal tumors per mouse by 47-77% when administered during the postinitiation period. Administration of 0.5-4.0% commercial grade curcumin in the diet both during the initiation and postinitation periods decreased the number of AOM-induced colon tumors per mouse by 51-62%. Administration of 2% commercial grade curcumin in the diet inhibited the number of AOM-induced colon tumors per mouse by 66% when fed during the initiation period and 25% when fed during the postinitiation period. The ability of commercial grade curcumin to inhibit AOM-induced colon tumorigenesis is comparable to that of pure curcumin (purity greater than 98%). Administration of pure or commercial grade curcumin in the diet to AOM-treated mice resulted in development of colon tumors which were generally smaller in number and size as compared to the control group of AOM-treated mice. These results indicate that not only did curcumin inhibit the number of tumors per mouse and the percentage of mice with tumors but it also reduced tumor size. Histopathological examination of the tumors sho Topics: Adenocarcinoma; Adenoma; Adenoma, Villous; Animals; Azoxymethane; Benzo(a)pyrene; Carcinogens; Colonic Neoplasms; Curcumin; Duodenal Neoplasms; Female; Male; Methylnitronitrosoguanidine; Mice; Stomach Neoplasms | 1994 |