curcumin has been researched along with Acute-Lung-Injury* in 56 studies
4 review(s) available for curcumin and Acute-Lung-Injury
Article | Year |
---|---|
Therapeutic potential of curcumin in ARDS and COVID-19.
Curcumin is a safe, non-toxic, readily available and naturally occurring compound, an active constituent of Curcuma longa (turmeric). Curcumin could potentially treat diseases, but faces poor physicochemical and pharmacological characteristics. To overcome these limitations, we developed a stable, water-soluble formulation of curcumin called cyclodextrin-complexed curcumin (CDC). We have previously shown that direct delivery of CDC to the lung following lipopolysaccharides exposure reduces acute lung injury (ALI) and effectively reduces lung injury, inflammation and mortality in mice following Klebsiella pneumoniae. Recently, we found that administration of CDC led to a significant reduction in angiotensin-converting enzyme 2 and signal transducer and activator of transcription 3 expression in gene and protein levels following pneumonia, indicating its potential in treating coronavirus disease 2019 (COVID-19). In this review, we consider the clinical features of ALI and acute respiratory distress syndrome (ARDS) and the role of curcumin in modulating the pathogenesis of bacterial/viral-induced ARDS and COVID-19. Topics: Acute Lung Injury; Animals; COVID-19; Curcumin; Lung; Mice; Respiratory Distress Syndrome | 2023 |
Insights on the synthesis of asymmetric curcumin derivatives and their biological activities.
Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Curcumin; Humans; Molecular Structure; Neoplasms | 2019 |
Acute Lung Injury: IL-17A-Mediated Inflammatory Pathway and Its Regulation by Curcumin.
Acute lung injury (ALI) is characterized by acute inflammation and tissue injury results in dysfunction of the alveolar epithelial membrane. If the epithelial injury is severe, a fibroproliferative phase of ALI can develop. During this phase, the activated fibroblast and myofibroblasts synthesize excessive collagenous extracellular matrix that leads to a condition called pulmonary fibrosis. Lung injury can be caused by several ways; however, the present review focus on bleomycin (BLM)-mediated changes in the pathology of lungs. BLM is a chemotherapeutic agent and has toxic effects on lungs, which leads to oxidative damage and elaboration of inflammatory cytokines. In response to the injury, the inflammatory cytokines will be activated to defend the system from injury. These cytokines along with growth factors stimulate the proliferation of myofibroblasts and secretion of pathologic extracellular matrix. During BLM injury, the pro-inflammatory cytokine such as IL-17A will be up-regulated and mediates the inflammation in the alveolar epithelial cell and also brings about recruitment of certain inflammatory cells in the alveolar surface. These cytokines probably help in up-regulating the expression of p53 and fibrinolytic system molecules during the alveolar epithelial cells apoptosis. Here, our key concern is to provide the adequate knowledge about IL-17A-mediated p53 fibrinolytic system and their pathogenic progression to pulmonary fibrosis. The present review focuses mainly on IL-17A-mediated p53-fibrinolytic aspects and how curcumin is involved in the regulation of pathogenic progression of ALI and pulmonary fibrosis. Topics: Acute Lung Injury; Alveolar Epithelial Cells; Animals; Bleomycin; Curcumin; Humans; Inflammation; Interleukin-17; Pulmonary Fibrosis; Tumor Suppressor Protein p53 | 2019 |
Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies.
Lung cancer is responsible for over one million deaths worldwide each year. Smoking cessation for lung cancer prevention remains key, but it is increasingly acknowledged that prevention strategies also need to focus on high-risk groups, including ex-smokers, and patients who have undergone resection of a primary tumor. Models for chemoprevention of lung cancer often present conflicting results, making rational design of lung cancer chemoprevention trials challenging. There has been much focus on use of dietary bioactive compounds in lung cancer prevention strategies, primarily due to their favorable toxicity profile and long history of use within the human populace. One such compound is curcumin, derived from the spice turmeric. This review summarizes and stratifies preclinical evidence for chemopreventive efficacy of curcumin in models of lung cancer, and adjudges the weight of evidence for use of curcumin in lung cancer chemoprevention strategies. Topics: Acute Lung Injury; Animals; Cell Line, Tumor; Curcumin; Evidence-Based Medicine; Humans; Lung Neoplasms; Primary Prevention; Secondary Prevention; Smoking Cessation; Tertiary Prevention; Translational Research, Biomedical | 2014 |
52 other study(ies) available for curcumin and Acute-Lung-Injury
Article | Year |
---|---|
Inhalation of L-arginine-modified liposomes targeting M1 macrophages to enhance curcumin therapeutic efficacy in ALI.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), characterized by uncontrolled lung inflammation, is one of the most devastating diseases with high morbidity and mortality. As the first line of defense system, macrophages play a crucial role in the pathogenesis of ALI/ARDS. Therefore, it has great potential to selectively target M1 macrophages to improve the therapeutic effect of anti-inflammatory drugs. l-arginine plays a key role in regulating the immune function of macrophages. The receptors mediating l-arginine uptake are highly expressed on the surface of M1-type macrophages. In this study, we designed an l-arginine-modified liposome for aerosol inhalation to target M1 macrophages in the lung, and the anti-inflammatory drug curcumin was encapsulated in liposomes as model drug. Compared with unmodified curcumin liposome (Cur-Lip), l-arginine functionalized Cur-Lip (Arg-Cur-Lip) exhibited higher uptake by M1 macrophages in vitro and higher accumulation in inflamed lungs in vivo. Furthermore, Arg-Cur-Lip showed more potent therapeutic effects in LPS-induced RAW 264.7 cells and the rat model of ALI. Overall, these findings indicate that l-arginine-modified liposomes have great potential to enhance curcumin treatment of ALI/ARDS by targeting M1 macrophages, which may provide an option for the treatment of acute lung inflammatory diseases such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome and middle east respiratory syndrome. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; COVID-19; Curcumin; Liposomes; Macrophages; Rats; Respiratory Distress Syndrome | 2023 |
Evaluation of nano-curcumin against inhaled paraquat-induced lung injury in rats.
Acute lung injury (ALI) remains a significant source of morbidity and mortality in critically ill patients and currently there is no efficient therapy for this condition. The aim of this research was to evaluate the protective activity of nano-curcumin (nano-CU) as a natural anti-inflammatory and antioxidant agent, against inhaled paraquat (PQ)-induced lung injury.. In the PQ group, total and differential WBC counts, malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF), interferon gamma (INF-γ) and interleukin 10 (IL-10) levels in the lung tissues, lung pathological changes, and tracheal responsiveness were increased but the BALF thiol, catalase (CAT) and superoxide dismutase (SOD) levels were reduced. In treated groups with nano-CU(H) and PIO + nano-CU(L), all measured variables, in Dexa and nano-CU(L) treated groups, most variables and in the PIO group only a few variables were improved. The improvement of most variables in the PIO + nano-CU(L) group was significantly higher than in the PIO and nano-CU(L) groups alone.. Nano-CU ameliorated lung damage induced by inhaled PQ similar to dexa and a synergic effect between nano-CU and PIO was observed, suggesting, a possible PPAR-γ receptor-mediated effect of curcumin. Topics: Acute Lung Injury; Animals; Curcumin; Lung; Paraquat; Rats | 2023 |
Design and synthesis optimization of novel diimide indoles derivatives for ameliorating acute lung injury through modulation of NF-κB signaling pathway.
Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Curcumin; Interleukin-6; Lipopolysaccharides; Mice; NF-kappa B; Signal Transduction | 2023 |
Reactive Oxygen Species-Triggered Curcumin Release from Hollow Mesoporous Silica Nanoparticles for PM
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM Topics: Acute Lung Injury; Curcumin; Humans; Inflammation; Nanoparticles; Particulate Matter; Reactive Oxygen Species; Serum Albumin, Bovine; Silicon Dioxide | 2023 |
Polyphosphazene nanodrugs for targeting delivery and inflammation responsive release of curcumin to treat acute lung injury by effectively inhibiting cytokine storms.
An excessive inflammatory response induced by cytokine storms is the primary reason for the deterioration of patients with acute lung injury (ALI). Though natural polyphenols such as curcumin (CUR) have anti-inflammation activity for ALI treatment, they often have limited efficacy due to their poor solubility in water and oxidising tendency. This study investigates a highly cross-linked polyphosphazene nano-drug (PHCH) developed by copolymerisation of CUR and acid-sensitive units (4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide, D-HBD) with hexachlorotripolyphosphonitrile (HCCP) for improved treatment of ALI. PHCH can prolong the blood circulation time and targeted delivery into lung inflammation sites by enhancing CUR's water dispersion and anti-oxidant properties. PHCH also demonstrates the inflammation-responsive release of CUR in an inflammation environment due to the acid-responsive degradation of hydrazine bonds and triphosphonitrile rings in PHCH. Therefore, PHCH has a substantial anti-inflammation activity for ALI treatment by synergistically improving CUR's water-solubility, bioavailability and biocompatibility. As expected, PHCH attenuates the cytokine storm syndrome and alleviates inflammation in the infected cells and tissues by down-regulating several critical inflammatory cytokines (TNF-α, IL-1β, and IL-8). PHCH also decreases the expression of p-p65 and C-Caspase-1, inhibiting NLRP3 inflammasomes and suppressing NF-κB signalling pathways. The administrated mice experiments confirmed that PHCH accumulation was enhanced in lung tissue and showed the efficient scavenging ability of reactive oxygen species (ROS), effectively blocking the cytokine storm and alleviating inflammatory damage in ALI. This smart polyphosphazene nano-drug with targeting delivery property and inflammation-responsive release of curcumin has excellent potential for the clinical treatment of various inflammatory diseases, including ALI. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Curcumin; Cytokine Release Syndrome; Inflammation; Lipopolysaccharides; Lung; Mice; Nanoparticles; NF-kappa B | 2023 |
Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury.
Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Antioxidants; Curcumin; Cytokines; Dendrimers; Disease Models, Animal; Lung; Mice; NF-kappa B; Phosphorus; Reactive Oxygen Species | 2022 |
Peroxiredoxin 6 mediates the protective function of curcumin pretreatment in acute lung injury induced by serum from patients undergoing one-lung ventilation in vitro.
Curcumin has attracted much attention due to its wide range of therapeutic effects. In this study, we used serum collected from patients undergoing one-lung ventilation (OLV) to establish an in vitro acute lung injury (ALI) model to explore the potential protective mechanism of curcumin on ALI. Our study provides a new reference for the prevention and treatment of ALI induced by OLV.. A549 cells were treated with 20% serum from patients undergoing OLV to establish an in vitro ALI model. Curcumin, at a dose of 40 μg/ml, was administered two hours prior to this model. The levels of inflammation and oxidative stress markers were observed by Western blot, qRT-PCR, ELISA and reactive oxygen species assay. Additionally, the expression of peroxiredoxin 6 (Prdx6) and proteins involved in the NF-κB signaling pathway was evaluated.. Twenty percent of serum collected from patients undergoing OLV downregulated the expression of Prdx6, leading to the activation of the NF-κB signaling pathway, which was associated with the subsequent overproduction of inflammatory cytokines and reactive oxygen species. Pretreatment with curcumin restored Prdx6 downregulation and inhibited NF-κB pathway activation by suppressing the nuclear translocation of P65, eventually reducing inflammation and oxidative stress damage in A549 cells.. Prdx6 mediated the protective function of curcumin by inhibiting the activation of the NF-κB pathway in ALI in vitro. Topics: Acute Lung Injury; Curcumin; Humans; Inflammation; Lipopolysaccharides; NF-kappa B; One-Lung Ventilation; Peroxiredoxin VI; Reactive Oxygen Species | 2022 |
Multiple anti-inflammatory mechanisms of Zedoary Turmeric Oil Injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics.
Prospects for the drug treatment of acute lung injury (ALI) is unpromising. Managing inflammation can prevent ALI from progressing and minimize further deterioration. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM) that has been used against ALI, has shown significant anti-inflammatory effects. However, the mechanisms underlying these effects remain unclear.. Elucidate the anti-inflammatory mechanism by which ZTOI acts against ALI in rats using an ingredients-targets-pathways (I-T-P) interaction network.. The key ingredients of ZTOI were characterized using UPLC-MS/MS combined with literature mining. The target profiles of each ingredient were established using drug-target databases. The anti-inflammatory activity of ZTOI against lipopolysaccharides (LPS)-induced rat ALI was validated using histopathology and inflammatory factor assessments. The therapeutic targets of ZTOI were screened by integrating transcriptomic results of lung tissues with protein-protein interaction (PPI) expansion. Using KEGG pathway enrichment, an I-T-P network was established to determine the essential interactions among ingredients, targets, and pathways of ZTOI against lung inflammation in ALI. Molecular docking and immunofluorescence staining were utilized to confirm the accuracy of the I-T-P network.. A total of 11 sesquiterpenes, whose target profiles may characterize the potential function of ZTOI, were identified as key ingredients. In the ALI rat model, ZTOI can alleviate lung inflammation by decreasing the levels of C-reactive protein, interleukin-6, interleukin-1β, and tumor necrosis factor α both in serum and lung tissues. Based on our biological samples, transcriptomics, PPI network expansion, and KEGG pathway enrichment, 11 ingredients, 174 targets, and 8 signaling pathways were linked in the I-T-P networks. From these results, ZTOI could be inferred to exert multiple anti-inflammatory effects against ALI through Toll-like receptor, NF-kappa B, RIG-I-like receptor, TNF, NOD-like receptor, IL-17, MAPK, and the Toll and Imd signaling pathways. In addition, two significantly regulated targets in the transcriptome, Usp18 and Map3k7, could be the essential anti-inflammatory targets of ZTOI.. By integrating network pharmacology with ingredient identification and transcriptomics, we show the multiple anti-inflammatory mechanisms by which ZTOI acts against ALI on an I-T-P level. This work also provides a methodological reference for related research into TCM. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; C-Reactive Protein; Chromatography, Liquid; Curcuma; Drugs, Chinese Herbal; Interleukin-17; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Molecular Docking Simulation; Network Pharmacology; NF-kappa B; NLR Proteins; Pneumonia; Rats; Receptors, Tumor Necrosis Factor; Tandem Mass Spectrometry; Transcriptome; Tumor Necrosis Factor-alpha | 2022 |
Epidemic modeling has been a key tool for understanding the impact of global viral outbreaks for over two decades. Recent developments of the COVID-19 pandemic have accelerated research using compartmental models, like SI, SIR, SEIR, with their appropriate modifications. However, there is a large body of recent research consolidated on homogeneous population mixing models, which are known to offer reduced tractability, and render conclusions hard to quantify. As such, based on our recent work, introducing the heterogeneous geo-spatial mobility population model (GPM), we adapt a modified SIR-V (susceptible-infected-recovered-vaccinated) epidemic model which embodies the idea of patient relapse from R back to S, vaccination of R and S patients (reducing their infectiousness), thus altering the infectiousness of V patients (from Topics: Acute Lung Injury; Adherens Junctions; Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents; Antigens, CD; Antineoplastic Agents, Phytogenic; Antioxidants; Apoptosis; beta Catenin; Brain Ischemia; Cadherins; Carcinogenesis; Catalysis; Cell Line; Cells, Cultured; Curcuma; Curcumin; Dioxoles; Disease Models, Animal; Endothelial Cells; Epithelial Cells; Heme Oxygenase (Decyclizing); Humans; Inflammasomes; Intestinal Diseases; Intestinal Mucosa; Ischemic Stroke; Kidney Neoplasms; Lignans; Lung; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; NAD(P)H Dehydrogenase (Quinone); Nanostructures; NF-E2-Related Factor 2; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Phosphatidylinositol 3-Kinases; Phytotherapy; Plant Extracts; Pneumonia; PPAR gamma; Proto-Oncogene Proteins c-akt; Pyroptosis; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reperfusion Injury; Respiratory Distress Syndrome; Sepsis; Sesamum; Signal Transduction; Silybin; Silybum marianum; Silymarin; Sirtuin 3; Titanium; Transfection; Treatment Outcome; White Matter | 2021 |
Curcumin Targets p53-Fibrinolytic System in TGF-β1 Mediated Alveolar Epithelial Mesenchymal Transition in Alveolar Epithelial Cells.
We aim to investigate curcumin interaction with p53-fibrinolytic system, smad dependent and independent pathways underlying their prime role during lung injury and fibrosis.. Curcumin, an active component of Curcuma longa plant, substantially modulates respiratory conditions. TGF-β1 plays a central role in lung remodeling by balancing extracellular matrix (ECM) production and degradation, which is a hallmark for alveolar EMT. However, the crosstalk of curcumin is not known yet with TGF- β1 mediated p53-Fibrinolytic system regulating alveolar EMT leading to IPF. In the present study, the potential molecular mechanism of curcumin in TGF-β1 mediated p53-fibrinolytic system in basal alveolar epithelial cells was explored.. To understand the potential molecular mechanism of curcumin in TGF-β1 mediated p53-fibrinolytic system in basal alveolar epithelial cells.. Basal alveolar epithelial cells were treated with TGF- β1 to induce alveolar EMT and after 24 hrs curcumin was administered to study its anti-fibrotic effects. Molecular techniques like immunoblot, RT-PCR and immunofluorescence were performed to assess the anti-fibrotic role of curcumin on EMT markers, IL-17A, p53-smad interaction to investigate the anti-fibrotic role of curcumin.. The results indicated that TGF-β1-induced EMT in A549 cells exhibited altered expression of the IL-17A, p53-fibrinolytic markers and EMT markers at the mRNA and protein level. Intervention with curcumin attenuated alveolar EMT and inactivated TGF-β1 induced Smad/non Smad signaling pathways via blocking p53-fibrinolytic system.. This study provides the first evidence of the dynamic response of curcumin on TGF- β1 mediated p53-fibrinolytic system during alveolar injury in vitro. Topics: A549 Cells; Acute Lung Injury; Alveolar Epithelial Cells; Cells, Cultured; Curcuma; Curcumin; Epithelial-Mesenchymal Transition; Fibrinolysis; Fibrosis; Humans; Lung; Plant Extracts; Signal Transduction; Transforming Growth Factor beta1; Tumor Suppressor Protein p53 | 2021 |
Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis.
This study was intended to investigate the effect of Curcumin on acute pulmonary embolism (APE) via microRNA-21 (miR-21)/PTEN/NF-κB axis. APE model was induced on rats and administrated with Curcumin. Western blot analysis and RT-qPCR manifested the downregulation of Sp1, miR-21 and NF-κB, but the upregulation of PTEN in Curcumin-treated APE rats. Blood gas analysis, ELISA, and weighing of wet weight/dry weight (W/D) ratio indicated that Curcumin diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. Further mechanical analysis was conducted by dual-luciferase reporter assays and ChIP assay, which showed that Sp1 increased miR-21 expression by binding to the miR-21 promoter, and that PTEN was targeted by miR-21. The APE rats were injected with adenovirus to evaluate the effect of Sp1, miR-21, or PTEN on lung injury and inflammation. It was observed that downregulation of miR-21 or Sp1, or upregulation of PTEN diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. In summary, Curcumin decreased miR-21 expression by downregulating Sp1 to upregulate PTEN and to impair the NF-κB signaling pathway, thus suppressing lung injury and inflammation in APE rats. Topics: Acute Lung Injury; Animals; Curcumin; Inflammation; MicroRNAs; NF-kappa B; PTEN Phosphohydrolase; Pulmonary Embolism; Rats; Rats, Sprague-Dawley; Signal Transduction | 2021 |
Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies.
Inflammation plays a major role in the pathogenesis of acute lung injury (ALI), but the mechanism remains unclear. Current anti-inflammatory therapy has poor efficacy on ALI. The aim of this study was to investigate the protective mechanism of curcumin against ALI. In in vivo experiments, curcumin significantly alleviated lung inflammation, histopathological injury and MPO activity, serum concentrations of CCL7, IL-6 and TNF-α, and mortality in mice compared to the model group. RAW264.7 cells cultured in the presence of lipopolysaccharide and adenosine triphosphate showed significantly lower viability, higher pyroptotic percentage and inflammation, but supplement of curcumin increased the cell viability, reduced pyroptosis and inflammation. Additionally, the expressions of NF-κB and pyroptosis related proteins were notably increased, while Sirtuin 1 (SIRT1) was decreased in both in vivo and in vitro ALI models. The results suggested that curcumin remarkably inhibited the expression of NF-κB and pyroptosis related proteins and increased the expression of SIRT1. However, EX527, a SIRT1 inhibitor, blocked the protective effect of curcumin against ALI. In conclusion, curcumin has protective effect against ALI. It may inhibit inflammatory process by inhibiting the activation of NLRP3 inflammasome-dependent pyroptosis through the up-regulation of SIRT1. Topics: Acute Lung Injury; Adenosine Triphosphate; Animals; Anti-Inflammatory Agents; Carbazoles; Curcumin; Disease Models, Animal; Inflammasomes; Inflammation; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Pyroptosis; RAW 264.7 Cells; Sirtuin 1 | 2021 |
The unique molecular targets associated antioxidant and antifibrotic activity of curcumin in in vitro model of acute lung injury: A proteomic approach.
Bleomycin (BLM) injury is associated with the severity of acute lung injury (ALI) leading to fibrosis, a high-morbidity, and high-mortality respiratory disease of unknown etiology. BLM-induced ALI is marked by the activation of a potent fibrogenic cytokine transcription growth factor beta-1 (TGFβ-1), which is considered a critical cytokine in the progression of alveolar injury. Previously, our work demonstrated that a diet-derived compound curcumin (diferuloylmethane), represents its antioxidative and antifibrotic application in TGF-β1-mediated BLM-induced alveolar basal epithelial cells. However, curcumin-specific protein targets, as well as its mechanism using mass spectrometry-based proteomic approach, remain elusive. To elucidate the underlying mechanism, a quantitative proteomics approach and bioinformatics analysis were employed to identify the protein targets of curcumin in BLM or TGF-β1-treated cells. With subsequent in vitro experiments, curcumin-related pathways and cellular processes were predicted and validated. The current study discusses two separate proteomics experiments using BLM and TGF-β1-treated cells with the proteomics approach, various unique target proteins were identified, and proteomic analysis revealed that curcumin reversed the expressions of unique proteins like DNA topoisomerase 2-alpha (TOP2A), kinesin-like protein (KIF11), centromere protein F (CENPF), and so on BLM or TGF-β1 injury. For the first time, the current study reveals that curcumin restores TGF-β1 induced peroxisomes like PEX-13, PEX-14, PEX-19, and ACOX1. This was verified by subsequent in vitro assays. This study generated molecular evidence to deepen our understanding of the therapeutic role of curcumin at the proteomic level and may be useful to identify molecular targets for future drug discovery. Topics: A549 Cells; Acetyl-CoA C-Acetyltransferase; Acute Lung Injury; Acyl-CoA Oxidase; Antibiotics, Antineoplastic; Antioxidants; Autoantigens; Binding Sites; Bleomycin; Calreticulin; Collagen Type XVII; Curcumin; Gene Expression Regulation; Gene Regulatory Networks; Humans; Kinesins; Models, Biological; Molecular Docking Simulation; Non-Fibrillar Collagens; Protein Binding; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Proteomics; Receptor, IGF Type 1; Receptor, IGF Type 2; Signal Transduction; Transforming Growth Factor beta1 | 2021 |
Comparative protein profiling reveals the inhibitory role of curcumin on IL-17A mediated minichromosome maintenance (MCM) proteins as novel putative markers for acute lung injury in vivo.
The Pro-inflammatory cytokine, Interleukin 17A (IL-17A) plays a vital role in the pathogenesis of inflammatory-induced acute lung injury (ALI). But, the mechanisms of this pro-inflammatory cytokine in response to activation after replication stress are not yet known. Control on DNA replication (DR) is vital for maintaining genome stability. Minichromosome maintenance (MCM) proteins play essential roles in various cancers, but their involvement during ALI is not yet been discussed. The present study was carried out to assess the participation of IL-17A during replication stress and to evaluate the contribution of curcumin on this. Mass spectrometry-based proteomic approach has been used on mice lung tissues treated with IL-17A, as a prime mediator to cause injury and curcumin a natural polyphenol as an intervention. Several trends were identified from the proteomic subset which revealed that IL-17A induces expressions of proteins like MCM2, MCM3, and MCM6 along with other proteins involved in DR. Interestingly, curcumin was found in suppressing the expression levels of these proteins. This was also confirmed via validating LC-MS/MS data using appropriate molecular techniques. Pathway and gene ontology analysis were performed with DAVID GO databases. Apart from this, the present study also reports the unique contribution of curcumin in suppressing the mRNA levels of other MCMs like MCM4, MCM5, and MCM7 as well as of ORC1 and ORC2. Hence, the present study revolves around linking the replication stress by pro-inflammatory effects, highlighting the implications for ALI and therapies. This study, therefore, enhances our capacity to therapeutically target DR-specific proteins. Topics: Acute Lung Injury; Animals; Biomarkers; Bleomycin; Curcumin; Interleukin-17; Male; Mice; Mice, Inbred C57BL; Minichromosome Maintenance Proteins; Proteomics | 2021 |
Curcumin Suppresses Epithelial Growth Factor Receptor (EGFR) and Proliferative Protein (Ki 67) in Acute Lung Injury and Lung Fibrosis
Acute lung injury is one of the common conditions caused due to bleomycin therapy which leads to pulmonary fibrosis, which is one of the severe interstitial lung diseases most commonly affecting the elderly individuals. EGFR and Ki67 can be marked as beneficial markers for detecting pulmonary fibrosis based on which clinicians can guide the therapy.. The aim of the study was to evaluate the effect of curcumin as an intervention on two prognostic markers EGFR and Ki67 in bleomycin-induced basal alveolar epithelial cells and C57BL/6 mice. Protein expressions and pathological expressions of EGFR and Ki67 were evaluated to analyze the effect of curcumin via both in vitro and in vivo approaches.. The effect of curcumin was investigated both on cell lines (A549) and animal model (both normal and bleomycin-induced mice, n=6) via techniques like western blotting for protein expression. Techniques like immunofluorescence and immunohistochemistry were carried out and examined under confocal microscopy and phase contrast microscopy to analyze the expressions of the said biomarkers. Bleomycin was used as a causative agent to induce inflammation.. The natural polyphenol curcumin could downregulate the expressions levels of Ki67 and EGFR both in vitro and in vivo. Immunofluorescence analysis of proliferative marker Ki67 showed a reduced expression on curcumin treatment in vitro. The pathological sections from treated lungs showed a significant decrease in EGFR and Ki67 levels when exposed to curcumin.. We conclude that curcumin, a well-known natural bioactive compound holds strong antiproliferative effects on Ki67 and EGFR expressions.We observed that a clinical outcome in the diagnosis of pulmonary fibrosis remains to be unconvincing so far. Curcumin can be considered as a potential therapeutic. Topics: A549 Cells; Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Proliferation; Curcumin; ErbB Receptors; Humans; Ki-67 Antigen; Male; Mice; Mice, Inbred C57BL; Pulmonary Fibrosis | 2020 |
Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Curcumin has been reported to be an anti-inflammatory factor through enhancing the function of regulatory T cells (Tregs). This study aimed to explore the effect of curcumin on the differentiation of Tregs and the role of curcumin in ALI/ARDS.. A cecal ligation and puncture (CLP)-induced acute lung injury mouse model was used to explore the effect of curcumin in ALI/ARDS. The severity of lung injury was evaluated. Immunohistochemistry of IL-17A and MPO in lung tissue was examined. Treg-related cytokine levels in serum and bronchoalveolar lavage fluid (BALF) were tested. The expression of nuclear factor-kappa B (NF-κB) in lung tissue was detected. Macrophages in lung tissue were detected by immunofluorescence. Splenic CD4+CD25+FOXP3+ Tregs were quantified, and the differentiation of Tregs from naïve CD4 + T cell and STAT5 was evaluated. The expression of IL-10 during naïve CD4 + T cell differentiation in vitro was tested.. Curcumin alleviated lung injury in the induced CLP mouse model and suppressed inflammation. IL-17A, MPO-producing neutrophils, and NF-κB p65 expression in lungs of CLP mice decreased significantly after pretreatment with curcumin. We found curcumin could regulate M1/M2 macrophage levels in lungs of CLP mice. This may have been through regulating the differentiation of Tregs and the production of Treg-derived IL-10. Treg-derived IL-10 is the main factor that could affect macrophage polarization. We found curcumin could increase Treg proportions in vivo and up-regulate IL-10 expression in serum and BALF of CLP mice. In our in vitro experiments, we found curcumin could promote Treg differentiation and increase the production of IL-10.. Curcumin can reduce the degree of severity of ALI and uncontrolled inflammation through promoting the differentiation of naïve CD4 + T cells to CD4+ CD25+ FOXP3+ Tregs. Curcumin promotes the conversion of macrophages from M1 to M2. The differentiation of Tregs induced by curcumin may be one source of IL-10 immune modulation. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Bronchoalveolar Lavage Fluid; CD4-Positive T-Lymphocytes; Cell Differentiation; Curcumin; Cytokines; Disease Models, Animal; Female; Inflammation; Interleukin-10; Macrophages; Male; Mice; Mice, Inbred C57BL; Respiratory Distress Syndrome; T-Lymphocytes, Regulatory | 2020 |
Effect of curcumin on IL-17A mediated pulmonary AMPK kinase/cyclooxygenase-2 expressions via activation of NFκB in bleomycin-induced acute lung injury in vivo.
Acute lung injury (ALI) remains to be the major cause of mortality. Bleomycin (BLM) injury activates the pro-inflammatory cytokine Interleukin L-17A which regulates the expression of COX-2 and inhibits P-AMPKα in BLM/IL-17A exposed mice upon activation of NFκB and other inflammatory molecules the actual mechanism behind which remains unclear. The current investigation was carried out to assess the role of IL-17A with COX-2 and P- AMPKα and to highlight the important contribution of adjunctive use of curcumin as a promising preventive strategy for the BLM-induced ALI. Immunofluorescence analysis reveals that the natural spice curcumin blocks the expressions of COX-2, NF-κB-p65, fibronectin (FBN), and expresses P-AMPKα in vivo. Curcumin could also suppress the expressions of NF-κB-p105 in BLM/IL-17A exposed mice. mRNA expressions showed reduced expressions of PDGFA, PDGFB, CTGF, IGF1, NFκB1, NFκB2, MMP-3, MMP-9, and MMP-14 on curcumin treatment. Our study implicates a critical role of AMPKα/COX- 2 in the emergence of pulmonary fibrosis via exerting the potential role of curcumin as an adjuvant anti-inflammatory therapeutic for treating lung injury. Topics: Acute Lung Injury; AMP-Activated Protein Kinases; Animals; Bleomycin; Curcumin; Cyclooxygenase 2; Interleukin-17; Lung; Mice, Inbred C57BL; NF-kappa B; Pulmonary Fibrosis | 2020 |
Curcumin Promotes the Expression of IL-35 by Regulating Regulatory T Cell Differentiation and Restrains Uncontrolled Inflammation and Lung Injury in Mice.
Interleukin (IL)-35, which has an anti-inflammatory role in acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), is relatively promising as a drug target. Studies have shown that curcumin may play a therapeutic role in ALI and enhance the suppressive function of regulatory T cells (Tregs). To illustrate the effect of curcumin on the regulation of Treg cell differentiation and expression of IL-35, we built a cecal ligation and puncture (CLP)-induced acute lung injury mouse mode with curcumin pretreatment. The expression of IL-35 in serum, severity of lung injury, IL-17A in lung tissue, survival rate, Treg-related cytokines levels in serum, nuclear factor-kappa B (NF-κB)'s nuclear translocation in lung tissue, and splenic CD4+CD25+FOXP3+ Tregs were assessed. Furthermore, the proportion of Tregs, STAT5, and IL-35 expression during naïve CD4+ T cell differentiation in vitro was measured. Compared with the CLP group, the increased IL-35 expression in CLP with the curcumin pretreatment (CLP + Cur) group was consistent with the decreased severity of lung injury, IL-17A protein levels in lung tissue, and Treg-related cytokines levels. Pretreatment with curcumin, the survival rate climbed to 50%, while the mortality rate was 100% in the CLP group. In addition, splenic CD4+CD25+FOXP3+ Treg cells increased in the CLP + Cur group. In vitro, CD4+CD25+FOXP3+ Treg cells from naïve CD4+ T cells, STAT5 proportion, and IL-35 expression increased after curcumin treatment. These findings showed that curcumin might regulate IL-35 by activating the differentiation of Treg cells to control the inflammation in acute lung injury. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cecum; Cell Differentiation; Curcumin; Gene Expression; Inflammation; Interleukins; Male; Mice; Mice, Inbred C57BL; T-Lymphocytes, Regulatory | 2020 |
Curcumin attenuates IL-17A mediated pulmonary SMAD dependent and non-dependent mechanism during acute lung injury in vivo.
Acute lung injury (ALI) is a pathologic condition responsible for incurable human chronic respiratory diseases. Recent studies have shown the involvement of the glycoprotein, IL17A secreted by IL-17 producing cells in chronic inflammation. The current investigation was carried out to study the IL-17A mediated activation of SMAD and non- SMAD signaling in alveolar epithelial cells and to assess the putative modulatory role of curcumin. C57BL/6 mice were exposed to IL-17A and curcumin was administered as an intervention to modulate the IL-17A-induced alveolar damage. Techniques like Immunofluorescence and real-time PCR were used. We found elevated expression of IL-17A and IL-17A-associated signaling pathways to be activated in mice lung tissues. Curcumin intervention in vivo promoted the resolution of IL-17A-induced ALI and attenuated pulmonary damage. Increase phosphorylation of non- SMAD proteins like P-EGFR, P-STAT-1, STAT-3, P-JAK-1/2, P-JNK, and also SMAD proteins like P- SMAD 2/3 and TGF-β1 was encountered upon IL-17A exposure, while curcumin intervention reversed the protein expression levels. Curcumin was found to block mRNA expressions of non- SMAD genes EGFR, JNK-1, JAK1, JAK2, STAT-1, STAT-3, MAPK14, also of TGF-β1 and SMAD genes like SMAD 2, SMAD 3. However, mRNA expressions of SMAD 6 and SMAD 7 were increased upon curcumin intervention. Our study indicates that IL-17A participates in the development of ALI in both SMAD dependent and independent manner and the IL-17A signaling components were effectively controlled by curcumin, suggesting probable anti-inflammatory use of curcumin during ALI. Topics: Acute Lung Injury; Alveolar Epithelial Cells; Animals; Curcumin; Inflammation; Interleukin-17; Lung; Male; Mice; Mice, Inbred C57BL; Signal Transduction; Smad Proteins; Transforming Growth Factor beta1 | 2020 |
Design and synthesis novel di-carbonyl analogs of curcumin (DACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI).
A novel series of di-carbonyl analogs of curcumin (DACs) were prepared and evaluated for their anti-inflammatory properties. Preliminary results showed that a vast majority of compounds tested in this study could effectively suppress LPS-induced production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Structure-activity relationships of the compounds were discussed. Compounds 5a27 and 5a28 showed the most potent anti-inflammatory activities and had higher structural stability and orally bioavailability than curcumin in vitro. Mechanistically, they inhibited the activation of macrophages via the blockade of mitogen-activated protein kinase (MAPK) signaling and nuclear translocation of NF-κB. In vivo, 5a27 and 5a28 markedly alleviated lipopolysaccharides (LPS)-induced acute lung injury (ALI). The wet/dry ratio of lungs was significantly normalized by the active compounds, which was consistent with the suppression of neutrophil infiltration and production of proinflammatory cytokines. Collectively, these results present a new series of curcumin analogs as promising anti-inflammatory agents for treatment of ALI. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Biological Availability; Curcumin; Drug Design; Interleukin-6; Lipopolysaccharides; Macrophage Activation; Mice; Mitogen-Activated Protein Kinases; NF-kappa B; Signal Transduction; Structure-Activity Relationship; Tumor Necrosis Factor-alpha | 2019 |
Curcumin relieves paraquat‑induced lung injury through inhibiting the thioredoxin interacting protein/NLR pyrin domain containing 3‑mediated inflammatory pathway.
When paraquat (PQ) enters the human body, it increases oxidative stress and inflammation, ultimately resulting in acute lung injury (ALI). Curcumin, a naturally occurring compound, has been reported to ameliorate PQ‑induced ALI; however, the underlying molecular mechanisms remain unclear. In the present study, normal lung fibroblasts (WI‑38VA13) were treated with 10 µmol/l PQ for 48 h, followed by a further 48 h incubation with 300 µmol/l curcumin. Cells were then harvested to determine their viability. Flow cytometry was performed to analyze the levels of reactive oxygen species (ROS) and the rate of apoptosis. The levels of apoptotic proteins and activation of the thioredoxin interacting protein/NLR pyrin domain containing 3 (TXNIP/NLRP3) axis were measured via reverse transcription‑quantitative polymerase chain reaction and western blot analyses. Proinflammatory cytokine levels were examined using enzyme‑linked immunosorbent assays. Finally, the expression levels of Notch1, extracellular signal‑regulated kinase 1/2 (ERK1/2) and phosphorylated‑ERK1/2 were evaluated via western blotting. Following treatment with curcumin, PQ‑induced increases in ROS levels and apoptosis were significantly attenuated, and Bcl‑2 expression levels were upregulated, whereas those of Bax were downregulated. It was also observed that curcumin treatment downregulated the expression levels of TXNIP, NLRP3, interleukin (IL)‑1β and IL‑18, and downstream caspase‑1 compared with PQ treatment alone. Curcumin significantly attenuated the upregulation of Notch1 without affecting ERK1/2 phosphorylation. The present findings suggested that the inhibitory effects of curcumin on TXINP1 may inhibit activation of the NLRP3 inflammasome, subsequently suppressing the upregulation of proinflammatory cytokines and ultimately improving PQ‑induced ALI. Topics: Acute Lung Injury; Anti-Inflammatory Agents; Apoptosis; Biomarkers; Curcumin; Cytokines; Fibroblasts; Gene Expression; Humans; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Paraquat; Signal Transduction; Thioredoxins | 2019 |
Inhibition Of JNK Phosphorylation By Curcumin Analog C66 Protects LPS-Induced Acute Lung Injury.
Acute lung injury (ALI) is characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Curcumin analog C66, having reported as an inhibitor of c-Jun N-terminal kinase (JNK), exhibits anti-inflammatory property both in vitro and in vivo. However, whether C66 is capable of reducing lipopolysaccharide (LPS)-induced ALI through the inhibition of inflammation by targeting JNK remains unknown.. Intratracheal injection of LPS was employed to build a mouse ALI model. H&E staining, wet/dry ratio, immunofluorescence staining, inflammatory cell detection, and inflammatory gene expression were used to evaluate lung injury and lung inflammation. In vitro, LPS was used to induce the expression of inflammatory cytokines both in protein and gene levels.. The results of our studies showed that the pretreatment with C66 and JNK inhibitor SP600125 was capable of attenuating the LPS-induced ALI by detecting pulmonary edema, pathological changes, total protein concentration, and inflammatory cell number in bronchoalveolar lavage fluid (BALF). Besides, C66 and SP600125 also suppressed LPS-induced inflammatory cytokine expression in BALF, serum, and lung tissue. In vitro, LPS-induced production of TNF-α and IL-6 and gene expression of TNF-α, IL-6, IL-1β, and COX-2 could be inhibited by the pretreatment with C66 and SP600125. It was found that C66 and SP600125 could inhibit LPS-induced phosphorylation of JNK both in vitro and in vivo.. In brief, our results suggested that C66 protects LPS-induced ALI through the inhibition of inflammation by targeting the JNK pathway. These findings further confirmed the pivotal role of JNK in ALI and implied that C66 is likely to serve as a potential therapeutic agent for ALI. Topics: Acute Lung Injury; Animals; Anthracenes; Cells, Cultured; Curcumin; Disease Models, Animal; Dose-Response Relationship, Drug; Inflammation; Injections, Intravenous; JNK Mitogen-Activated Protein Kinases; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Molecular Structure; Phosphorylation; Structure-Activity Relationship | 2019 |
Sialic Acid-Functionalized PEG-PLGA Microspheres Loading Mitochondrial-Targeting-Modified Curcumin for Acute Lung Injury Therapy.
Topics: Acute Lung Injury; Animals; Cell Survival; Curcumin; Human Umbilical Vein Endothelial Cells; Humans; Male; Membrane Potential, Mitochondrial; Mice; Microspheres; Mitochondria; N-Acetylneuraminic Acid; Polyesters; Polyethylene Glycols | 2019 |
Combined delivery of curcumin and the heme oxygenase-1 gene using cholesterol-conjugated polyamidoamine for anti-inflammatory therapy in acute lung injury.
Acute lung injury (ALI) is an inflammatory lung disease with a high mortality rate. In this study, combined delivery of the anti-inflammatory compound curcumin and the heme-oxygenase-1 (HO-1) gene using cholesterol-conjugated polyamidoamine was evaluated in a mouse model as a therapeutic option for ALI.. Curcumin was loaded into cholesterol-conjugated polyamidoamine (PamChol) micelles, and curcumin-loaded PamChol (PamChol-Cur) was then complexed with plasmid DNA (pDNA) through charge interactions. The pDNA/PamChol-Cur complex was physically characterized by dynamic light scattering, gel retardation, and heparin competition assay. Gene delivery efficiency was measured by luciferase assay. The HO-1 expression plasmid (pHO-1)/PamChol-Cur complex was administrated into the ALI model via intratracheal injection. The anti-inflammatory effect of the pDNA/PamChol-Cur complex was evaluated by ELISA, immunohistochemistry, and hematoxylin and eosin staining.. The pDNA/PamChol-Cur complex had a size of approximately 120 nm with a positive surface charge. The in vitro plasmid DNA (pDNA) delivery efficiency of the pDNA/PamChol-Cur complex into L2 lung epithelial cells was higher than that of pDNA/PamChol. In addition, the curcumin in the pDNA/PamChol-Cur complex inhibited the nuclear translocation of NF-κB, suggesting an anti-inflammatory effect of curcumin. In the ALI animal model, the pHO-1/PamChol-Cur complex delivered the pHO-1 gene more efficiently than pHO-1/PamChol. In addition, the pHO-1/PamChol-Cur complex showed greater anti-inflammatory effects by reducing anti-inflammatory cytokine levels more than delivery of pHO-1/PamChol or PamChol-Cur only.. The pHO-1/PamChol-Cur complex had a higher pHO-1 gene-delivery efficiency and greater anti-inflammatory effects than the pHO-1/PamChol complex or PamChol-Cur. Therefore, the combined delivery of curcumin and pHO-1 using PamChol-Cur may be useful for treatment of ALI. Topics: Acute Lung Injury; Administration, Inhalation; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cholesterol; Curcumin; Disease Models, Animal; Drug Carriers; Drug Delivery Systems; Epithelial Cells; Gene Transfer Techniques; Heme Oxygenase-1; Lipopolysaccharides; Lung; Male; Mice, Inbred BALB C; Micelles; Plasmids; Polyamines; Rats | 2019 |
New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity.
An overactive Toll-like receptor (TLR) signaling complex is a significant pathogenic factor of acute and chronic inflammatory diseases. The natural product curcumin is reported to inhibit the TLR4 co-receptor, MD2 (myeloid differentiation protein 2), but its low in vivo bioavailability limits its therapeutic potential. We developed new curcumin analogs (MACs) with removal of the β-diketone moiety and substituted residues in benzene rings, and identify these as potential MD2 inhibitors with improved inhibition potency and stability over that of curcumin. Specifically, MAC 17 and 28 showed the highest anti-inflammatory activity, with >90% inhibition of LPS-stimulated cytokine secretion from macrophages, and protected against LPS-induced acute lung injury and sepsis. The MACs inhibited the TLR4-MD2 signaling complex through competition with LPS for binding on MD2, likely at Arg Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Curcumin; Cytokines; Lipopolysaccharides; Lymphocyte Antigen 96; Macrophages, Peritoneal; Mice; Sepsis; Toll-Like Receptor 4 | 2018 |
Curcumin Attenuates Pulmonary Inflammation in Lipopolysaccharide Induced Acute Lung Injury in Neonatal Rat Model by Activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) Pathway.
BACKGROUND This study aimed to investigate the therapeutic effect of curcumin in lipopolysaccharide (LPS) induced neonatal acute lung injury (ALI) and the possibly associated molecular mechanisms. MATERIAL AND METHODS ALI neonatal animal model was established by using LPS. Curcumin and/or peroxisome proliferator-activated receptor γ (PPARγ) inhibitor BADGE (bisphenol A diglycidyl ether) were administrated to animals. Lung edema was evaluated by PaO2 and lung wet/dry weight ratio (W/D) measurements. EMSA was used to determine the PPARγ activity. Levels of high-mobility group box 1 (HMGB1), secretory receptor for advanced glycation end products (RAGE), tumor necrosis factor α (TNFα), interleukin 6 (IL6), and transforming growth factor b1 (TGFβ1) in bronchoalveolar lavage fluid (BALF) were examined by ELISA. Western blotting was used to evaluate the expression levels of HMGB1, RAGE, heme oxygenase 1 (HO1), TNFα, IL6, and TGFβ1 in lung tissue. RESULTS Curcumin administration significantly improved lung function by increasing PaO2 and decreasing W/D in neonatal ALI rats. Curcumin treatment upregulated the PPARγ activity and expression level of HO1 which were suppressed in lung tissue of neonatal ALI rats. Elevated levels of HMGB1, RAGE, TNFα, IL6, and TGFβ1 in both lung tissue and BALF from neonatal ALI rats were decreased dramatically by curcumin treatment. PPARγ inhibitor BADGE administration impaired curcumin's alleviation on lung edema, inhibitory effects on inflammatory cytokine expression and recovery of PPARg/HO1 signaling activation. CONCLUSIONS Curcumin alleviated lung edema in LPS-induced ALI by inhibiting inflammation which was induced by PPARγ/HO1 regulated-HMGB1/RAGE pro-inflammatory pathway. Topics: Acute Lung Injury; Animals; Bronchoalveolar Lavage Fluid; Curcumin; Disease Models, Animal; Heme Oxygenase-1; HMGB1 Protein; Interleukin-6; Lipopolysaccharides; Male; Pneumonia; PPAR gamma; Rats; Rats, Sprague-Dawley; Signal Transduction; Transforming Growth Factor beta1; Tumor Necrosis Factor-alpha | 2018 |
Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo.
Bleomycin (BLM) induced cellular damage causes inflammation in the alveolar compartment and impairment of fibrinolytic system leads to alveolar epithelial cell apoptosis. Here, we describe novel inflammatory pathway associated with p53-fibrinolytic system and apoptosis of alveolar epithelial cells and pharmacological efficiency of curcumin against this action. In the present study we used C57BL/6 mice. The specific dose and time interval of curcumin were analyzed to assess the intervention. Experiments were designed to investigate the IL-17A mediated modulation in the alveolar epithelial cell apoptosis and injury. Various techniques such as Western blot, RT-PCR, Immunohistochemistry were used for this study. We observed that the BLM-induced lung injury and its progression were successfully regulated by the effective dose and time intervention of curcumin. There was also decreased expression of chemokines, p53, and fibrinolytic components such as PAI-1 and increased uPA, uPAR expression, and decreased alveolar epithelial cell apoptosis, which indicates the IL-17A mediated novel inflammatory pathway. It is confirmed that the IL-17A involved in the modulation of p53-fibrinolytic system and epithelial cell apoptosis in BLM induced mice. The cross-talk between the inflammatory, fibrinolytic, and apoptotic pathways were resolved by curcumin intervention. This pathway and intervention could serve as a modern therapy to resolve the complications to cure the lung injury and its progression. Topics: Acute Lung Injury; Alveolar Epithelial Cells; Analysis of Variance; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antibiotics, Antineoplastic; Apoptosis; Bleomycin; Caspase 3; Curcumin; Disease Models, Animal; Down-Regulation; Fibrosis; Interleukin-17; Male; Mice; Mice, Inbred C57BL; Proto-Oncogene Proteins c-akt; Time Factors; Tumor Suppressor Protein p53 | 2018 |
Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases.
Acute lung injury (ALI) is a major cause of acute respiratory failure in critically-ill patients. Resveratrol and curcumin are proven to have potent anti-inflammatory efficacy, but their clinical application is limited by their metabolic instability. Here, a series of resveratrol and the Mono-carbonyl analogs of curcumin (MCAs) hybrids were designed and synthesized by efficient aldol construction strategy, and then screened for anti-inflammatory activities in vitro and in vivo. The results showed that the majority of analogs effectively inhibited the LPS-induced production of IL-6 and TNF-α. Five analogs, a9, a18, a19, a20 and a24 exhibited excellent anti-inflammatory activity in a dose-dependent manner along with low toxicity in vitro. Structure activity relationship study revealed that the electron-withdrawing groups at meta-position and methoxyl group (OCH Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Curcumin; Gene Expression Regulation; Humans; Interleukin-6; Lung; Mice; RAW 264.7 Cells; Resveratrol; RNA, Messenger; Stilbenes; Tumor Necrosis Factor-alpha | 2017 |
Discovery of a New Inhibitor of Myeloid Differentiation 2 from Cinnamamide Derivatives with Anti-Inflammatory Activity in Sepsis and Acute Lung Injury.
Acute inflammatory diseases, including acute lung injury and sepsis, remain the most common life-threatening illness in intensive care units worldwide. Cinnamamide has been incorporated in several synthetic compounds with therapeutic potentials including anti-inflammatory properties. However, the possible mechanism and direct molecular target of cinnamamides for their anti-inflammatory effects were rarely investigated. In this study, we synthesized a series of cinnamamides and evaluated their anti-inflammatory activities. The most active compound, 2i, was found to block LPS-induced MD2/TLR4 pro-inflammatory signaling activation in vitro and to attenuate LPS-caused sepsis and acute lung injury in vivo. Mechanistically, we demonstrated that 2i exerts its anti-inflammatory effects by directly targeting and binding MD2 in Arg90 and Tyr102 residues and inhibiting MD2/TLR4 complex formation. Taken together, this work presents a novel MD2 inhibitor, 2i, which has the potential to be developed as a candidate for the treatment of sepsis, and provides a new lead structure for the development of anti-inflammatory agents targeting MD2. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Binding Sites; Cinnamates; Cytokines; Drug Discovery; Interleukin-6; Lipopolysaccharides; Lymphocyte Antigen 96; Macrophages; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Models, Molecular; RAW 264.7 Cells; Sepsis; Survival Analysis; Toll-Like Receptor 4 | 2016 |
Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.
A series of novel symmetric and asymmetric allylated mono-carbonyl analogs of curcumin (MACs) were synthesized using an appropriate synthetic route and evaluated experimentally thru the LPS-induced expression of TNF-α and IL-6. Most of the obtained compounds exhibited improved water solubility as a hydrochloride salt compared to lead molecule 8f. The most active compound 7a was effective in reducing the Wet/Dry ratio in the lungs and protein concentration in bronchoalveolar lavage fluid. Meanwhile, 7a also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1β, and VCAM-1, in Beas-2B cells after Lipopolysaccharide (LPS) challenge. These results suggest that 7a could be therapeutically beneficial for use as an anti-inflammatory agent in the clinical treatment of acute lung injury (ALI). Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Curcumin; Cytokines; Lipopolysaccharides; Rats; RNA, Messenger; Solubility; Wettability | 2016 |
Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK.
Curcumin, a biphenolic compound extracted from turmeric (Curcuma longa), possesses potent anti-inflammatory activity. The present study investigated whether curcumin could increase 5' adenosine monophosphate-activated protein kinase (AMPK) activity in macrophages and modulate the severity of lipopolysaccharide (LPS)-induced acute lung injury.. Macrophages were treated with curcumin and then exposed (or not) to LPS. Acute lung injury was induced by intratracheal administration of LPS in BALB/c mice.. Curcumin increased phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in a time- and concentration-dependent manner. Curcumin did not increase phosphorylation of liver kinase B1, a primary kinase upstream of AMPK. STO-609, an inhibitor of calcium(2+)/calmodulin-dependent protein kinase kinase, diminished curcumin-induced AMPK phosphorylation, but transforming growth factor-beta-activated kinase 1 inhibitor did not. Curcumin also diminished the LPS-induced increase in phosphorylation of inhibitory κB-alpha and the production of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein (MIP)-2, and interleukin (IL)-6 by macrophages. Systemic administration of curcumin significantly decreased the production of TNF-α, MIP-2, and IL-6 as well as neutrophil accumulation in bronchoalveolar lavage fluid, and also decreased pulmonary myeloperoxidase levels and the wet/dry weight ratio in mice subjected to LPS treatment.. These results suggest that the protective effect of curcumin on LPS-induced acute lung injury is associated with AMPK activation. Topics: Acute Lung Injury; AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Benzimidazoles; Chemokine CXCL2; Curcuma; Curcumin; Lipopolysaccharides; Lung; Macrophages; Male; Mice; Mice, Inbred BALB C; Naphthalimides; Neutrophils; Phosphorylation; Signal Transduction; Tumor Necrosis Factor-alpha | 2016 |
Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats.
Decline in oxygen availability experienced under hypobaric hypoxia (HH) mediates imbalance in lung fluid clearance and is a causative agent of acute lung injury. Here, we investigate the pathological events behind acute HH mediated lung injury and assess the therapeutic efficacy of nanocurcumin in its amelioration. We assess the protective efficacy of nanotized curcumin (nanocurcumin) in ameliorating HH induced lung injury and compare to curcumin. Rats exposed to acute HH (6, 12, 24, 48 and 72 h) were subjected to histopathology, blood-gas analysis and clinical biochemistry, cytokine response and redox damage. HH induced lung injury was analysed using markers of lung injury due to pulmonary vasoconstriction (ET-1/2/3 and endothelin receptors A and B) and trans-vascular fluid balance mediator (Na+/K+ ATPase). The protective efficacy of nanocurcumin was analysed by examination of Akt/Erk signalling cascade by western blot. HH induced lung injury was associated with discrete changes in blood analytes, differential circulatory cytokine response and severe pulmonary redox damages. Up-regulation of ET-1/2/3 and its receptors along with down-regulation of Na+/K+ ATPase confirmed defective pulmonary fluid clearance which promoted edema formation. Nanocurcumin treatment prevented lung edema formation and restored expression levels of ET-1/2/3 and its receptors while restoring the blood analytes, circulatory cytokines and pulmonary redox status better than curcumin. Modulation in Akt/Erk signalling pathway in rat lungs under HH confirmed the protective efficacy of nanocurcumin. Topics: Acute Lung Injury; Animals; Biomarkers; Curcumin; Disease Models, Animal; Endothelin-1; Endothelin-2; Endothelin-3; Gene Expression Regulation; Hypoxia; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nanostructures; Oxidation-Reduction; Protective Agents; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptor, Endothelin A; Receptor, Endothelin B; Signal Transduction; Sodium-Potassium-Exchanging ATPase | 2016 |
Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model.
Paraquat (PQ), a potent herbicide can cause severe toxicity. We report here that fibroproliferation phase of acute lung injury (ALI) is initiated much earlier (within 48 h) after PQ intoxication than previously reported (after 2 weeks) and we aimed to study the protective effects of intranasal curcumin as new therapeutic strategy in mouse model.. Mice (Park's strain) were divided into five experimental groups (I) control, received only saline (0.9 % NaCl) (II) PQ, mice intoxicated with PQ (50 mg/kg, i.p., single dose); (III) curcumin, treated with curcumin (5 mg/kg, i.n) an hour before PQ administration; (IV)Veh, DMSO (equal volume to curcumin) given an hour before PQ exposure; (V) DEXA, mice treated with dexamethasone (1 mg/kg, i.p) before an hour of PQ intoxication. After 48 h of the PQ exposure, all mice were sacrificed and samples were analyzed.. Pretreatment with intranasal curcumin (5 mg/kg) could modify the PQ-intoxication (50 mg/kg, i.p) induced structural remodeling of lung parenchyma at an early phase of acute lung injury. Significant increase in inflammatory cell count, reactive oxygen species and hydroxyproline levels were decreased after curcumin pretreatment (all p < 0.05). Histological examination and zymography results were also found consistent.. Our results show that curcumin pretreatment decreased the expression of alpha smooth muscle actin (α-SMA), matrix metalloproteinases-9 (MMP-9) and changed the expression of tissue inhibitors of metalloproteinase (TIMP-1) after PQ intoxication. Single toxic dose of PQ has initiated fibroproliferation within 48 h and intranasal curcumin may prove as new therapeutic strategy for PQ induced ALI and fibroproliferation. Topics: Acute Lung Injury; Administration, Intranasal; Animals; Anti-Inflammatory Agents; Collagen; Curcumin; Disease Models, Animal; Fibrosis; Lung; Male; Mice, Inbred Strains; Oxidative Stress; Paraquat; Pneumonia | 2016 |
Curcumin attenuates staphylococcus aureus-induced acute lung injury.
Curcumin has remarkable anti-inflammatory and antioxidant properties. However, its effects on bacterium-induced acute lung injury (ALI) are not fully understood.. To investigate the protective effects of curcumin on a mouse model of S. aureus-induced ALI.. Mice were pretreated with intraperitoneal injection of curcumin or vehicle 2 h before Staphylococcus aureus instillation. The survival rate and bacterial burden after infection were recorded. Mice were sacrificed for the analyses of severity of pneumonia, integrity of lung barrier, disorder of coagulation cascades and extent of inflammation 12 h postinfection. The production of proinflammatory cytokines and chemokines in the lung and bronchoalveolar lavage fluid was detected.. Pretreatment with curcumin markedly attenuated S. aureus-induced pneumonia, barrier disruption, lung edema and vascular leakage. Activation of plasminogen activator inhibitor-1 and infiltration of neutrophils were reduced by curcumin, together with lower levels of proinflammatory cytokines and chemokines.. Curcumin can alleviate S. aureus-induced ALI through multiple pathways. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Disease Models, Animal; Female; Injections, Intraperitoneal; Mice; Mice, Inbred C57BL; Pneumonia, Staphylococcal; Staphylococcus aureus | 2015 |
Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice.
Lipopolysaccharide (LPS) is one of the most powerful proinflammatory factor and can induce acute pulmonary inflammation even lung injury after inhalation or systemic administration. LPS induces sepsis and multiple organ damage. Curcumin (diferuloylmethane), a major component of turmeric, exhibits protection against LPS-induced acute lung injury (ALI). We aimed to investigate effects of intranasal curcumin on LPS-induced ALI in mice where curcumin (10 mg/kg, intranasal (i.n.) was given an hour before LPS exposure. After 24 h of intranasal LPS instillation, a marked increase in neutrophil recruitment and myeloperoxidase (MPO) activity was noted which were significantly ameliorated in curcumin treatment group. Oxidative stress markers like nitric oxide (NO), malondialdehyde (MDA) level and evans blue capillary leakage assay also revealed suppression after curcumin treatment; interestingly, levels of anti-oxidative enzymes such as superoxide dismutase (SOD) and catalase were upregulated. Inflammatory cytokine, tumour necrosis factor alpha (TNF-α) level was significantly attenuated by curcumin. Hence, intranasal curcumin could be a novel therapeutic strategy for LPS-induced ALI by directly targeting the lungs and enhancing anti-oxidant levels. Topics: Acute Lung Injury; Administration, Intranasal; Animals; Anti-Inflammatory Agents, Non-Steroidal; Bronchoalveolar Lavage Fluid; Capillary Permeability; Catalase; Curcumin; Disease Models, Animal; Lipopolysaccharides; Lung; Malondialdehyde; Mice; Mice, Inbred BALB C; Nitric Oxide; Nitrites; Oxidative Stress; Random Allocation; Respiratory Distress Syndrome; Sepsis; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2015 |
Design, synthesis and biological activity of novel asymmetric C66 analogs as anti-inflammatory agents for the treatment of acute lung injury.
Acute lung injury (ALI) is a leading cause of morbidity and mortality in critically-ill patients. Previously, we reported that a symmetric mono-carbonyl analog of curcumin, (C66), exhibits enhanced stability and was found to have efficacy and be involved in potential cytokines inhibition. In the present study, a series of novel asymmetric C66 analogs were designed and synthesized. A majority of them effectively inhibited the LPS-induced expression of TNF-α and IL-6. Significantly, compound 4b2 was found to effectively reduce LPS-induced pulmonary inflammation, as reflected by reductions in concentration of total protein, inflammatory cell count as well as the lung W/D ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, in vivo administration of 4b2 resulted in remarkable improvement in histopathological changes of lung in rats. Topics: Acute Lung Injury; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Cytokines; Dose-Response Relationship, Drug; Drug Design; Humans; Lipopolysaccharides; Molecular Structure; Structure-Activity Relationship | 2015 |
Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury.
Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) have been the leading cause of morbidity and mortality in intensive care units (ICU). Currently, there is no effective pharmacological treatment for acute lung injury. Curcumin, extracted from turmeric, exhibits broad anti-inflammatory properties through down-regulating inflammatory cytokines. However, the instability of curcumin limits its clinical application.. A series of new curcumin analogs were synthesized and screened for their inhibitory effects on the production of TNF-α and IL-6 in mouse peritoneal macrophages by ELISA. The evaluation of stability and mechanism of active compounds was determined using UV-assay and Western Blot, respectively. In vivo, SD rats were pretreatment with c26 for seven days and then intratracheally injected with LPS to induce ALI. Pulmonary edema, protein concentration in BALF, injury of lung tissue, inflammatory cytokines in serum and BALF, inflammatory cell infiltration, inflammatory cytokines mRNA expression, and MAPKs phosphorylation were analyzed. We also measured the inflammatory gene expression in human pulmonary epithelial cells.. In the study, we synthesized 30 curcumin analogs. The bioscreeening assay showed that most compounds inhibited LPS-induced production of TNF-α and IL-6. The active compounds, a17, a18, c9 and c26, exhibited their anti-inflammatory activity in a dose-dependent manner and exhibited greater stability than curcumin in vitro. Furthermore, the active compound c26 dose-dependently inhibited ERK phosphorylation. In vivo, LPS significantly increased protein concentration and number of inflammatory cells in BALF, pulmonary edema, pathological changes of lung tissue, inflammatory cytokines in serum and BALF, macrophage infiltration, inflammatory gene expression, and MAPKs phosphorylation . However, pretreatment with c26 attenuated the LPS induced increase through ERK pathway in vivo. Meanwhile, compound c26 reduced the LPS-induced inflammatory gene expression in human pulmonary epithelial cells.. These results suggest that the novel curcumin analog c26 has remarkable protective effects on LPS-induced ALI in rat. These effects may be related to its ability to suppress production of inflammatory cytokines through ERK pathway. Compound c26, with improved chemical stability and bioactivity, may have the potential to be further developed into an anti-inflammatory candidate for the prevention and treatment of ALI. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Bronchoalveolar Lavage Fluid; Cells, Cultured; Curcumin; Disease Models, Animal; Enzyme Activation; Epithelial Cells; Gene Expression Regulation; Humans; Inflammation Mediators; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Lung; Macrophages, Peritoneal; Male; Mice, Inbred ICR; Mitogen-Activated Protein Kinases; Pulmonary Edema; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Time Factors; Tumor Necrosis Factor-alpha | 2015 |
Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb.
To investigate the anti-inflammatory and antioxidant effect of curcumin on lung lesion induced by intestinal ischemia reperfusion injury (IIR).. Rats were divided into four groups: sham, intestinal IIR (IIR), 1 mg/kg of curcumin treatment group (1 mg/kg), and 5 mg/kg of curcumin treatment group (5 mg/kg). Curcumin was given respectively (1 mg/kg and 5 mg/kg) following the above doses. IIR was produced by 1 h of intestinal ischemia followed by 2 h of reperfusion. Rats were sacrificed at the end of reperfusion and lung tissues were collected for biochemical and histopathological examination in 4 groups. Lung tissues histology and bronchoalveolar lavage fluid (BALF) protein were assayed. Serum IL-6, lung superoxide dismutase (SOD) and myeloperoxidase (MPO) were measured. The expression level of NF-κB and ICAM-1 (including immunohistochemical analysis and western blot analysis) were also measured.. Lung tissue injury induced by IIR was obviously observed through pathology and BALF protein. MPO activity, IL-6 level and ICAM-1 expression were significantly increased with the elevation of NF-κB, simultaneously, SOD activity was decreased. With Treatment of curcumin, pathology and BALF protein of lung tissue were improved clearly. Inflammatory indexes (MPO activity, IL-6 level and ICAM-1) were improved and antioxidant index (SOD activity) was enhanced paralleled with NF-κB.. Using curcumin effectively prevented IIR-induced lung injury. Anti-inflammatory and antioxidant effects of curcumin could be observed by inhibiting the pathway of NF-κB. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Antioxidants; Biomarkers; Bronchoalveolar Lavage Fluid; Curcumin; Humans; Intestines; Lung; Male; Models, Animal; NF-kappa B; Rats; Rats, Wistar; Reperfusion Injury | 2015 |
Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice.
Paraquot (PQ) is widely and commonly used as herbicide and has been reported to be hazardous as it causes lung injury. However, molecular mechanism underlying lung toxicity caused by PQ has not been elucidated. Curcumin, a known anti-inflammatory molecule derived from rhizomes of Curcuma longa has variety of pharmacological activities including free-radical scavenging properties but the protective effects of curcumin on PQ-induced acute lung injury (ALI) have not been studied. In this study, we aimed to study the effects of curcumin on ALI caused by PQ in male parke's strain mice which were challenged acutely by PQ (50mg/kg, i.p.) with or without curcumin an hour before (5mg/kg, i.n.) PQ intoxication. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for pathological and biochemical analysis after 48h of PQ exposure. Curcumin administration has significantly enhanced superoxide dismutase (SOD) and catalase activities. Lung wet/dry weight ratio, malondialdehyde (MDA) and lactate dehydrogenase (LDH) content, total cell number and myeloperoxidase (MPO) levels in BALF as well as neutrophil infiltration were attenuated by curcumin. Pathological studies also revealed that intranasal curcumin alleviate PQ-induced pulmonary damage and pro-inflammatory cytokine levels like tumor necrosis factor-α (TNF-α) and nitric oxide (NO). These results suggest that intranasal curcumin may directly target lungs and curcumin inhalers may prove to be effective in PQ-induced ALI treatment in near future. Topics: Acute Lung Injury; Administration, Intranasal; Animals; Anti-Inflammatory Agents, Non-Steroidal; Bronchoalveolar Lavage Fluid; Curcumin; Cytokines; Gene Expression Regulation; Lung; Male; Mice; Oxidative Stress; Paraquat | 2014 |
The effects of germacrone on lipopolysaccharide-induced acute lung injury in neonatal rats.
Germacrone is one of the main bioactive components in the traditional Chinese medicine Rhizoma curcuma and has been shown to possess an anti-inflammatory activity. Our present study aimed to investigate the protective effects of germacrone on lipopolysaccharide (LPS)-induced acute lung injury in neonatal rats. Results showed that germacrone treatment significantly decreased the expression of pro-inflammatory cytokines IL-6 and TNF-α. Meanwhile, the expression of anti-inflammatory mediators TGF-β1 and IL-10 was obviously increased following germacrone administration. The LPS-induced pathological changes in neonatal rats were also attenuated by germacrone treatment. In vitro, MTT and EdU incorporation assay indicated that germacrone administration significantly increased the A549 cell viabilities in a dose-dependent manner. Besides, flow cytometry and TUNEL analysis showed that the cell apoptosis rate was significantly reduced in a concentration-dependent manner after germacrone injection. At the molecular level, we found that germacrone treatment promoted the expression of claudin-4 both in vivo and in vitro as shown by real time PCR and western blot. Collectively, our study demonstrated that germacrone protected neonatal rats against LPS-induced ALI partially by modulation of claudin-4. Topics: Acute Lung Injury; Animals; Animals, Newborn; Anti-Inflammatory Agents; Apoptosis; Cell Line; Claudin-4; Curcuma; Humans; Interleukin-10; Interleukin-6; Lipopolysaccharides; Lung; Rats; Rats, Wistar; RNA, Messenger; Sesquiterpenes, Germacrane; Tumor Necrosis Factor-alpha; Up-Regulation | 2014 |
The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-β1/SMAD3 pathway.
Curcumin has the potential to treat inflammatory diseases. This study investigated its effect on sepsis-induced acute lung injury (ALI) in a rat model. 125 healthy rats were randomly divided into five groups, including normal group, sham-operated group, sepsis group, dimethyl sulfoxide group, and curcumin-treated group (25 rats in each subgroup). Sepsis-induced acute lung injury was affected by cecal ligation and puncture surgery. At 0, 6, 12, 24, and 48 h after treatment, the lungs were harvested for histological and protein expression examinations. 24h after the initial treatment, real-time PCR and Western blot analysis showed that the expression of TGF-β1 and SMAD3-dependent signaling pathway was significantly decreased in the curcumin-treated group than other control groups (P<0.05). Therefore, curcumin played a protective role in sepsis-induced ALI, possibly through the inhibition of the expression of TGF-β1/SMAD3 pathway which may provide a new strategy for the treatment of sepsis-induced ALI. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Curcumin; Disease Models, Animal; Male; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sepsis; Smad3 Protein; Transforming Growth Factor beta1 | 2013 |
Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion.
The aim of this study is to evaluate the role of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into 3 groups: sham, I/R, and I/R + curcumin; each group contains 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were killed at the end of reperfusion and lung tissue samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by curcumin treatment have been reported. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissue samples. Intestinal I/R caused severe histopathological injury including oedema, haemorrhage, increased thickness of the alveolar wall, and infiltration of inflammatory cells into alveolar spaces. Curcumin treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and increase in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with curcumin therapy. It was concluded that curcumin treatment may have beneficial effects in acute lung injury, and therefore has potential for clinical use. Topics: Acute Lung Injury; Animals; Curcumin; Immunohistochemistry; Intestines; Lung; Male; Nitric Oxide Synthase Type II; Oxidative Stress; Protective Agents; Pulmonary Surfactant-Associated Protein D; Rats; Rats, Wistar; Reperfusion Injury; Statistics, Nonparametric | 2013 |
Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury.
Local or systemic inflammation can result in acute lung injury (ALI), and is associated with capillary leakage, reduced lung compliance, and hypoxemia. Curcumin, a plant-derived polyphenolic compound, exhibits potent anti-inflammatory properties, but its poor solubility and limited oral bioavailability reduce its therapeutic potential. A novel curcumin formulation (CDC) was developed by complexing the compound with hydroxypropyl-γ-cyclodextrin (CD). This results in greatly enhanced water solubility and stability that facilitate direct pulmonary delivery. In vitro studies demonstrated that CDC increased curcumin's association with and transport across Calu-3 human airway epithelial cell monolayers, compared with uncomplexed curcumin solubilized using DMSO or ethanol. Importantly, Calu-3 cell monolayer integrity was preserved after CDC exposure, whereas it was disrupted by equivalent uncomplexed curcumin solutions. We then tested whether direct delivery of CDC to the lung would reduce severity of ALI in a murine model. Fluorescence microscopic examination revealed an association of curcumin with cells throughout the lung. The administration of CDC after LPS attenuated multiple markers of inflammation and injury, including pulmonary edema and neutrophils in bronchoalveolar lavage fluid and lung tissue. CDC also reduced oxidant stress in the lungs and activation of the proinflammatory transcription factor NF-κB. These results demonstrate the efficacy of CDC in a murine model of lung inflammation and injury, and support the feasibility of developing a lung-targeted, curcumin-based therapy for the treatment of patients with ALI. Topics: Acute Lung Injury; Animals; Cell Line; Curcumin; Drug Administration Routes; Male; Mice; Mice, Inbred C57BL; Severity of Illness Index; Solubility | 2012 |
Curcumin for the prevention of acute lung injury in sepsis: is it more than the flavor of the month?
Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Male; Sepsis | 2012 |
Curcumin attenuates cardiopulmonary bypass-induced lung oxidative damage in rats.
Acute lung injury is a common complication after cardiopulmonary bypass (CPB). Oxidative damage greatly impacts CPB-induced lung ischemic pathogenesis and may represent a target for treatment. We aimed to investigate whether curcumin upregulates heme oxygenase 1 (HO-1) expression and ameliorates lung injury in a rat CPB model.. A total of 80 male Sprague-Dawley rats were divided into 2 sets of 5 groups (n = 8 per group): sham; control (CPB); vehicle; low-dose curcumin (L-Cur); and high-dose curcumin (H-Cur). Animals were pretreated with a single intraperitoneal injection of vehicle, L-Cur (50 mg/kg), or H-Cur (200 mg/kg) 2 hours prior to CPB. Lung tissue, serum, and bronchoalveolar lavage fluid was harvested 2 or 24 hours postoperatively. In the control group, CPB-induced lung injury was confirmed by histopathologic examination and a significantly increased wet-to-dry lung weight ratio and pulmonary permeability index value was observed (P < .05 vs sham group). Cardiopulmonary bypass was associated with a marked rise in the level of malondialdehyde and myeloperoxidase and a fall in superoxide dismutase 2 and 24 hours after surgery (P < .05 vs sham group). Administration of curcumin ameliorated lung damage and reversed the oxidative stress markers in a partially dose-dependent manner (P < .05 vs vehicle group). Furthermore, HO-1 gene transcription and protein expression were elevated to a greater extent in the lungs after curcumin pretreatment compared with the vehicle pretreatment.. Curcumin has the potential to provide protection from CPB-induced lung damage reflected in the expression of oxidative stress markers. The antioxidant effect of curcumin may be partly related to upregulation of HO-1. Topics: Acute Lung Injury; Animals; Antioxidants; Biomarkers; Capillary Permeability; Cardiopulmonary Bypass; Cardiotonic Agents; Curcumin; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Induction; Heme Oxygenase (Decyclizing); Injections, Intraperitoneal; Lung; Male; Oxidative Stress; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2012 |
Curcumin protects against sepsis-induced acute lung injury in rats.
The present study aimed to investigate the effect of curcumin on sepsis-induced acute lung injury (ALI) in rats, and explore its possible mechanisms. Male Sprague-Dawley rats were randomly divided into the following five experimental groups (n = 20 per group): animals undergoing a sham cecal ligature puncture (CLP) (sham group); animals undergoing CLP (control group); or animals undergoing CLP and treated with vehicle (vehicle group), curcumin at 50 mg/kg (low-dose curcumin [L-Cur] group), or curcumin at 200 mg/kg (high-dose curcumin [H-Cur] group).At 6, 12, 24 h after CLP, blood, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level, and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathologic changes in lungs. Myeloperoxidase (MPO) activity, malondialdehyde (MDA) content, as well as superoxidase dismutase (SOD) activity were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interluekin-8 (IL-8), and macrophage migration inhibitory factor (MIF) were determined in the BALF. Survival rates were recorded at 72 h in the five groups in another experiment. Treatment with curcumin significantly attenuated the CLP-induced pulmonary edema and inflammation, as it significantly decreased lung W/D ratio, protein concentration, and the accumulation of the inflammatory cells in the BALF, as well as pulmonary MPO activity. This was supported by the histopathologic examination, which revealed marked attenuation of CLP-induced ALI in curcumin treated rats. In addition, curcumin significantly increased SOD activity with significant decrease in MDA content in the lung. Also, curcumin caused down-regulation of the inflammatory cytokines TNF-α, IL-8, and MIF levels in the lung. Importantly, curcumin improved the survival rate of rats by 40%-50% with CLP-induced ALI. Taken together, these results demonstrate the protective effects of curcumin against the CLP-induced ALI. This effect can be attributed to curcumin ability to counteract the inflammatory cells infiltration and, hence, ROS generation and regulate cytokine effects. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Bronchoalveolar Lavage Fluid; Curcumin; Dose-Response Relationship, Drug; Interleukin-8; Lung; Macrophage Migration-Inhibitory Factors; Male; Malondialdehyde; Models, Animal; Oxidative Stress; Peroxidase; Rats; Rats, Sprague-Dawley; Sepsis; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2012 |
Amphiphilic peptide carrier for the combined delivery of curcumin and plasmid DNA into the lungs.
In this study, the R7L10 peptide, which is composed of a 7-arginine stretch and a 10-leucine stretch, was evaluated as a carrier for the combined delivery of curcumin and plasmid DNA (pDNA) into the lungs. Curcumin is a natural product with anti-inflammatory and anti-tumor effects. Curcumin-loaded R7L10 (R7L10-curucmin) was prepared by an oil-in-water (O/W) emulsion/solvent evaporation method. In vitro transfection showed that R7L10-curcumin had higher transfection efficiency than R7L10. Although R7L10-curcumin had lower transfection efficiency than polyethylenimine (25 kDa, PEI25k) and lipofectamine, R7L10-curcumin had lower cytotoxicity. In gel retardation assays and heparin competition assays, R7L10-curcumin formed a more stable complex with pDNA than R7L10. The intracellular curcumin delivery efficiency of R7L10-curcumin was higher than that of curcumin only. Furthermore, R7L10-curcumin more efficiently decreased TNF-α level in lipopolysaccharide (LPS)-activated Raw264.7 macrophage cells than curcumin only. For in vivo evaluation, pDNA/R7L10-curcumin complexes were administered into mouse lungs by intratracheal instillation. The results revealed that R7L10-curcumin delivered pDNA more efficiently than R7L10, poly-L-lysine (PLL), or PEI25k. In addition, R7L10-curcumin decreased TNF-α level in lung tissues in an acute lung injury mouse model. In contrast to PEI25k, R7L10-curcumin did not show liver toxicity after intravenous injection. These results suggest that R7L10-curcumin is a useful carrier for the combined delivery of curcumin and pDNA into the lungs. Topics: Acute Lung Injury; Animals; Curcumin; Deoxyribonuclease I; DNA; Drug Carriers; Drug Delivery Systems; Electrophoretic Mobility Shift Assay; Enzyme-Linked Immunosorbent Assay; Gene Transfer Techniques; HEK293 Cells; Humans; Intracellular Space; Liver; Lung; Male; Mice; Mice, Inbred BALB C; Microscopy, Electron, Scanning; Nuclease Protection Assays; Peptides; Plasmids; Surface-Active Agents; Transfection; Tumor Necrosis Factor-alpha | 2012 |
The effect of curcumin on lung injuries in a rat model induced by aspirating gastrointestinal decontamination agents.
Aspiration is one of the most feared complications of gastrointestinal decontamination procedures with nonabsorbed polyethylene glycol (PEG) solution and activated charcoal (AC). We aimed to investigate the protective effects of curcumin (CUR) on lung injury in rats induced by aspiration of these agents.. Experimental rats were divided randomly into 6 groups (n = 7): a saline-aspirated control (group I), sterile saline aspirated with CUR treatment (group II), PEG aspirated (group III), PEG aspirated with CUR treatment (group IV), AC aspirated (group V), and AC aspirated with CUR treatment (group VI). After aspiration, treatment groups II, IV, and VI were given 150 mg/kg CUR intraperitoneally once a day for 7 days. After 7 days, the rats were humanely killed, and both the lungs and serum specimens from all groups were evaluated histopathologically, immunohistochemically, and biochemically.. Aspiration of gastrointestinal decontamination agents produced histopathologic changes, elevated levels of malondialdehyde and surfactant protein D, reduced levels of antioxidant enzymes, and increased expression of inflammatory cytokines interleukin-1β and tumor necrosis factor α. Curcumin treatments effectively attenuated the rats' pulmonary inflammation responses (as shown by reduced alveolar damage), decreased serum malondialdehyde and surfactant protein D levels, and inhibited the expressions of tumor necrosis factor α and interleukin-1β.. Because of its anti-inflammatory effects, CUR treatment may have preventive effects on lung injuries induced by aspirating gastrointestinal decontamination agents. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Biomarkers; Charcoal; Curcumin; Drug Administration Schedule; Female; Immunohistochemistry; Injections, Intraperitoneal; Pneumonia, Aspiration; Polyethylene Glycols; Random Allocation; Rats; Rats, Sprague-Dawley; Respiratory Aspiration; Sodium Chloride | 2012 |
Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice.
Acute lung injuries due to acute lung infections remain a major cause of mortality. Thus a combination of an antibiotic and a compound with immunomodulatory and anti-inflammatory activities can help to overcome acute lung infection-induced injuries. Curcumin derived from the rhizome of turmeric has been used for decades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatory properties by downregulation of various inflammatory mediators. Keeping these properties in mind, we investigated the anti-inflammatory properties of curcumin in a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillation of bacteria in this mouse model of acute pneumonia-induced inflammation resulted in a significant increase in neutrophil infiltration in the lungs along with increased production of various inflammatory mediators [i.e. malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumour necrosis factor (TNF)-alpha] in the lung tissue. The animals that received curcumin alone orally or in combination with augmentin, 15 days prior to bacterial instillation into the lungs via the intranasal route, showed a significant (P <0.05) decrease in neutrophil influx into the lungs and a significant (P <0.05) decrease in the production of MDA, NO, MPO activity and TNF-alpha levels. Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-alpha levels significantly (P >0.05) as compared to the control group. We therefore conclude that curcumin ameliorates lung inflammation induced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, curcumin can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in the case of acute lung infection. Topics: Acute Lung Injury; Amoxicillin-Potassium Clavulanate Combination; Animals; Curcumin; Drug Therapy, Combination; Klebsiella Infections; Klebsiella pneumoniae; Lung; Malondialdehyde; Mice; Mice, Inbred BALB C; Neutrophil Infiltration; Nitric Oxide; Peroxidase; Pneumonia, Bacterial; Tumor Necrosis Factor-alpha | 2010 |
Preventive effects of curcumin on different aspiration material-induced lung injury in rats.
We have studied whether curcumin protects different pulmonary aspiration material-induced lung injury in rats.. The experiments were designed in 60 Sprague-Dawley rats, randomly allotted into one of six groups (n=10): normal saline (NS, control), enteral formula (Biosorb Energy Plus, BIO), hydrochloric acid (HCl), NS+curcumin-treated, BIO+curcumin-treated, and HCl+curcumin-treated. NS, BIO, HCl were injected in to the lungs. The rats received curcumin twice daily only for 7 days. Seven days later, both lungs in all groups were examined histopathologically, immunohistochemically, and biochemically. Histopathologic examination was performed according to the presence of peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, interstitial fibrosis, granuloma, and necrosis formation. Immunohistochemical assessments were examined for the activity of inducible nitric oxide synthase (iNOS) and the expression of surfactant protein D (SP-D). Malondialdehyde (MDA), hydroxyproline (HP), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity were measured in the lung tissue.. Our findings show that curcumin inhibits the inflammatory response reducing significantly (P<0.05) all histopathological parameters in different pulmonary aspiration models. Pulmonary aspiration significantly increased the tissue HP content, MDA levels and decreased the antioxidant enzyme (SOD, GSH-Px) activities. Curcumin treatment significantly decreased the elevated tissue HP content, and MDA levels and prevented inhibition of SOD, and GSH-Px enzymes in the tissues. Furthermore, our data suggest that there is a significant reduction in the activity of iNOS and a rise in the expression of SP-D in lung tissue of different pulmonary aspiration models with curcumin therapy.. Our findings support the use of curcumin as a potential therapeutic agent in acute lung injury. Topics: Acute Lung Injury; Animals; Curcumin; Enzyme Inhibitors; Glutathione Peroxidase; Hydroxyproline; Immunohistochemistry; Lung; Malondialdehyde; Random Allocation; Rats; Rats, Sprague-Dawley; Respiratory Aspiration; Superoxide Dismutase | 2009 |
[Protective effect of curcumin on oleic-induced acute lung injury in rats].
To investigate the effect of curcumine on acute lung injury induced by oleic acid in rat and the possible mechanism of action. The rats were divided into 6 groups randomly: normal group, control group, curcumine groups (5, 10, 20 mg x kg(-1)) and dexamethasone group (1 mg x kg(-1)). During the experiment, acute lung injury was induced by oleic acid in rat. The changes of dynamic lung compliance were recorded by anrise 2005 pulmonary function test apparatus, light microscope was used to examine histological changes and lung index as well as wet to dry weight ratio was calculated by weighting method. Lung vascular permeability and protein level in BALF were detected by ultraviolet spectrophotometry, and the concentrations of TNF-alpha, IL-6 and IL-10 in BALF were measured by enzyme linked immunosorbent assay (ELISA). The result showed that the changes of pulmonary compliance were inhibited and pulmonary function was improved by curcumine. The OA-induced elevation of lung index was restrained, as well as wet to dry weight ratio, lung vascular permeability, protein level, TNF-alpha (250.4 +/- 21.6 vs. 172.53 +/- 14.88, 122.2 +/- 10.98, 108.69 +/- 3.39) ng x L(-1), IL-6 (763.6 +/- 88.33 vs. 207.41 +/- 15.55, 172.13 +/- 21.91, 142.92 +/- 4.32) ng x L(-1) in BALF in curcumine groups, IL-10 (98.90 +/- 2.99 vs. 208.44 +/- 16.30, 218.43 +/- 6.23, 252.70 +/- 20.58) ng x L(-1) in BALF was increased, respectively significantly. Light microscope findings shown that the impairment in curcumine groups was far less severe than that in model groups. Pretreatment of curcumine showed beneficial effect on acute lung injury induced by oleic acid in rats. The mediation of both proinflammatory factor and anti-inflammatory factor by curcumine may be involved in mechanism of action of curcumine effects. Topics: Acute Disease; Acute Lung Injury; Animals; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Drugs, Chinese Herbal; Humans; Male; Oleic Acids; Random Allocation; Rats; Rats, Sprague-Dawley | 2008 |
Protective effect of curcumin on endotoxin-induced acute lung injury in rats.
To investigate the protective effect of curcumin on endotoxin-induced acute lung injury in rats, and explore the underlying mechanisms, 24 male Wistar rats were randomly divided into 4 experimental groups: sham-vehicle (S), sham-curcumin (C), lipopolysaccharide (LPS)-vehicle (L), and curcumin-lipopolysaccharide (C-L) groups. The wet/dry (W/D) weight ratio of the lung and bronchoalveolar lavage (BAL) fluid protein content were used as measures of lung injury. Neutrophil recruitment and activation were evaluated by BAL fluid cellularity and myeloperoxidase (MPO) activity in cell-free BAL and lung tissue. The levels of cytokine-induced neutrophil chemoattractant-I (CINC-1) in lung tissues were measured by ELISA. The histopathological changes of lung tissues were observed by using the HE staining. Our results showed that lung injury parameters, including the wet/dry weight ratio and protein content in BALF, were significantly higher in the L group than in the S group (P<0.01). In the L group, higher numbers of neutrophils and greater MPO activity in cell-free BAL and lung homogenates were observed when compared with the S group (P<0.01). There was a marked increase in CINC-1 levels in lung tissues in response to LPS challenge (P<0.01, L group vs S group). Curcumin pretreatment significantly attenuated LPS-induced changes in these indices. LPS caused extensive morphological lung damage, which was also lessened after curcumin pretreatment. All the above-mentioned parameters in the C group were not significantly different from those of the S group. It is concluded that curcumin pretreatment attenuates LPS-induced lung injury in rats. This beneficial effect of curcumin may involves, in part, inhibition of neutrophilic recruitment and activity, possibly through inhibition of lung CINC-1 expression. Topics: Acute Lung Injury; Animals; Chemokine CXCL1; Curcumin; Disease Models, Animal; Endotoxins; Lung; Male; Neutrophils; Rats; Rats, Wistar | 2006 |