cucurbitacin-i and Neoplasms

cucurbitacin-i has been researched along with Neoplasms* in 5 studies

Reviews

2 review(s) available for cucurbitacin-i and Neoplasms

ArticleYear
From bench (laboratory) to bed (hospital/home): How to explore effective natural and synthetic PAK1-blockers/longevity-promoters for cancer therapy.
    European journal of medicinal chemistry, 2017, Dec-15, Volume: 142

    PAK family kinases are RAC/CDC42-activated kinases that were first found in a soil amoeba 4 decades ago, and 2 decades later, were discovered in mammals as well. Since then at least 6 members of this family have been identified in mammals. One of them called PAK1 has been best studied so far, mainly because it is essential not only for malignant cell growth and metastasis, but also for many other diseases/disorders such as diabetes (type 2), AD (Alzheimer's disease), hypertension, and a variety of inflammatory or infectious diseases, which definitely shorten our lifespan. Moreover, PAK1-deficient mutant of C. elegans lives longer than the wild-type by 60%, clearly indicating that PAK1 is not only an oncogenic but also ageing kinase. Thus, in theory, both anti-oncogenic and longevity-promoting activities are among the "intrinsic" properties or criteria of "clinically useful" PAK1-blockers. There are a variety of PAK1-blocking natural products such as propolis and curcumin which indeed extend the healthy lifespan of small animals such as C. elegans by inducing the autophagy. Recently, we managed to synthesize a series of potent water-soluble and highly cell-permeable triazolyl esters of COOH-bearing PAK1-blockers such as Ketorolac, ARC (artepillin C) and CA (caffeic acid) via "Click Chemistry" that boosts their anti-cancer activity over 500-fold, mainly by increasing their cell-permeability, and one of them called 15K indeed extends the lifespan of C. elegans. In this mini-review we shall discuss both synthetic and natural PAK1-blockers, some of which would be potentially useful for cancer therapy with least side effect (rather promoting the longevity as well).

    Topics: Animals; Antineoplastic Agents; Click Chemistry; Drug Discovery; Humans; Longevity; Neoplasms; p21-Activated Kinases; Protein Kinase Inhibitors

2017
Targeting Stat3 in cancer therapy.
    Anti-cancer drugs, 2005, Volume: 16, Issue:6

    Stat3 is constitutively activated in many human cancers where it functions as a critical mediator of oncogenic signaling through transcriptional activation of genes encoding apoptosis inhibitors (e.g. Bcl-x(L), Mcl-1 and survivin), cell-cycle regulators (e.g. cyclin D1 and c-Myc) and inducers of angiogenesis (e.g. vascular endothelial growth factor). This article reviews several approaches that have been pursued for targeting Stat3 in cancer therapy including antisense strategies, tyrosine kinase inhibition, decoy phosphopeptides, decoy duplex oligonucleotides and G-quartet oligodeoxynucleotides (GQ-ODN). The GQ-ODN strategy is reviewed in somewhat greater detail than the others because it includes a novel system that effectively delivers drug into cells and tissues, addresses successfully the issue of specificity of targeting Stat3 versus Stat1, and has demonstrated efficacy in vivo.

    Topics: Angiogenesis Inducing Agents; Animals; Anticarcinogenic Agents; Apoptosis; Cell Cycle Proteins; Cell Movement; Cell Proliferation; Humans; Inhibitor of Apoptosis Proteins; Ligands; Neoplasms; Oligonucleotides; Oligonucleotides, Antisense; Phosphopeptides; Plasmids; Protein Conformation; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Signal Transduction; src Homology Domains; STAT3 Transcription Factor; Transcriptional Activation; Triterpenes; Tyrphostins

2005

Other Studies

3 other study(ies) available for cucurbitacin-i and Neoplasms

ArticleYear
Cucurbitacin I Reverses Tumor-Associated Macrophage Polarization to Affect Cancer Cell Metastasis.
    International journal of molecular sciences, 2023, Nov-02, Volume: 24, Issue:21

    The tumor microenvironment plays a critical role in tumor progression and immune regulation. As one of the most important components of the tumor microenvironment, macrophages have become a new therapeutic target for inhibiting tumor progression. Despite the well-documented anticancer activity of cucurbitacin I, its effect on macrophages remains unclear. In this study, we established a coculture system of macrophages and cancer cells under hypoxic conditions to simulate the tumor-promoting environment mediated by M2-like macrophages. We determined whether cucurbitacin I modulates M2-like polarization in macrophages in vitro and conducted RNA sequencing to identify gene expression changes induced by cucurbitacin I in macrophages. The results indicated a remarkable inhibition of the M2-like polarization phenotype in macrophages following treatment with cucurbitacin I, which was accompanied by the significant downregulation of heme oxygenase-1. Moreover, we found that cucurbitacin I-treated macrophages reduced the migration of cancer cells by inhibiting the M2 polarization in vitro. These findings highlight the potential of cucurbitacin I as a therapeutic agent that targets M2-like macrophages to inhibit cancer cell metastasis. Our study provides novel insights into the intricate interplay among macrophage polarization, cucurbitacin I, and heme oxygenase-1, thereby opening new avenues for cancer treatment.

    Topics: Cell Line, Tumor; Heme Oxygenase-1; Neoplasms; Signal Transduction; Tumor-Associated Macrophages

2023
Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery.
    Journal of natural products, 2015, Apr-24, Volume: 78, Issue:4

    Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon cochaperones, immunophilins, etc., for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, heat shock factor-1, translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two cochaperones, Cdc37 and p23.

    Topics: Benzoquinones; Cucurbitaceae; DNA-Binding Proteins; Heat Shock Transcription Factors; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; MCF-7 Cells; Molecular Chaperones; Molecular Structure; Neoplasms; Transcription Factors; Triterpenes

2015
Development of a poly(d,l-lactic-co-glycolic acid) nanoparticle formulation of STAT3 inhibitor JSI-124: implication for cancer immunotherapy.
    Molecular pharmaceutics, 2010, Apr-05, Volume: 7, Issue:2

    Constitutively activated signal transducer and activator of transcription-3 (STAT3) in tumor and dendritic cells (DCs) plays a critical role in tumor-induced immunosuppression. This is considered a major challenge in effective immunotherapy of cancer. Herein we describe the development of a polymeric nanocarrier for the delivery of JSI-124 (a small molecule inhibitor of STAT3) to tumor and immunosuppressed DCs using poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NPs). For this purpose, JSI-124 was chemically conjugated to PLGA and the PLGA-JSI-124 conjugate was formulated into nanoparticles using the emulsification solvent evaporation method. The attachment of JSI-124 to PLGA was confirmed by a combination of thin layer chromatography and (1)H NMR. The level of JSI-124 in NPs, determined by liquid chromatography-mass spectrometry, was found to be 1.7 +/- 0.3 microg per mg of PLGA. The PLGA-JSI-124 NPs demonstrated a controlled drug release profile over a 1-month period and exhibited potent anticancer and STAT3 inhibitory activity comparable to the soluble JSI-124 after 24 h incubation with B16 melanoma cells, in vitro. Moreover, PLGA-JSI-124 NPs efficiently suppressed the level of p-STAT3 in p-STAT3(high) DCs, generated from mouse bone marrow cells in the presence of conditioned media of B16 cells (B16CM-DCs), and improved their function as assessed by mixed lymphocyte reaction (MLR). Specifically cotreatment of B16CM-DCs with PLGA-JSI-124 NPs and PLGA NPs containing the DC adjuvant CpG resulted in higher levels of T cell proliferation in the MLR assay compared with B16CM-DCs untreated or treated with either CpG NPs or JSI-124 NPs alone. Our results indicate that PLGA NPs containing conjugated JSI-124 can potentially provide a useful platform for sustained JSI-124 release in tumor and its targeted delivery to DCs leading to the modulation of anticancer response by JSI-124 in tumor cells and immunosuppressed DCs, in vitro.

    Topics: Animals; Cell Line, Tumor; Cells, Cultured; Dendritic Cells; Flow Cytometry; Immunotherapy; Lactic Acid; Lymphocyte Culture Test, Mixed; Melanoma, Experimental; Mice; Models, Biological; Nanoparticles; Neoplasms; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; STAT3 Transcription Factor; Triterpenes

2010