cucurbitacin-i has been researched along with Glioma* in 2 studies
2 other study(ies) available for cucurbitacin-i and Glioma
Article | Year |
---|---|
Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells.
Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas. Topics: Astrocytes; Aurora Kinase A; Aurora Kinase B; Biphenyl Compounds; Caspases; Cell Cycle; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Synergism; ErbB Receptors; Gene Expression; Genotype; Glioma; Humans; Inhibitor of Apoptosis Proteins; Nitrophenols; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; PTEN Phosphohydrolase; Signal Transduction; Sulfonamides; Survivin; Triterpenes; Tumor Suppressor Protein p53 | 2015 |
Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma.
A variety of cancers, including malignant gliomas, show aberrant activation of STAT3, which plays a pivotal role in negative regulation of antitumor immunity. We hypothesized that inhibition of STAT3 signals would improve the efficacy of T cell adoptive transfer therapy by reversal of STAT3-induced immunosuppression in a murine GL261 intracranial glioma model. In vitro treatment of GL261 cells with JSI-124, a STAT3 inhibitor, reversed highly phosphorylated status of STAT3. Systemic i.p. administration of JSI-124 in glioma-bearing immunocompetent mice, but not athymic mice, resulted in prolonged survival, suggesting a role of adaptive immunity in the antitumor effect. Furthermore, JSI-124 promoted maturation of tumor-infiltrating CD11c(+) dendritic cells and activation of tumor-conditioned cytotoxic T cells, enhanced dendritic cells and GL261 production of CXCL-10, a critical chemokine for attraction of Tc1 cells. When i.p. JSI-124 administration was combined with i.v. transfer of Pmel-I mouse-derived type-1 CTLs (Tc1), glioma-bearing mice exhibited prolonged survival compared with i.p. JSI-124 or i.v. Tc1 therapy alone. Flow cytometric analyses of brain infiltrating lymphocytes revealed that JSI-124-treatment enhanced the tumor-homing of i.v. transferred Tc1 cells in a CXCL-10-dependent fashion. Systemic JSI-124 administration also up-regulated serum IL-15 levels, and promoted the persistence of transferred Tc1 in the host. These data suggest that systemic inhibition of STAT3 signaling can reverse the suppressive immunological environment of intracranial tumor bearing mice both systemically and locally, thereby promoting the efficacy of adoptive transfer therapy with Tc1. Topics: Adoptive Transfer; Animals; Brain Neoplasms; Cell Line, Tumor; Cell Migration Inhibition; Cells, Cultured; Combined Modality Therapy; Glioma; Injections, Intraventricular; Mice; Mice, Inbred C57BL; Mice, Nude; Mice, Transgenic; Neoplasm Transplantation; Phosphorylation; STAT3 Transcription Factor; T-Lymphocyte Subsets; T-Lymphocytes, Cytotoxic; Triterpenes | 2008 |