ctce-9908 and Bone-Neoplasms

ctce-9908 has been researched along with Bone-Neoplasms* in 5 studies

Other Studies

5 other study(ies) available for ctce-9908 and Bone-Neoplasms

ArticleYear
Dual CXCR4 and E-Selectin Inhibitor, GMI-1359, Shows Anti-Bone Metastatic Effects and Synergizes with Docetaxel in Prostate Cancer Cell Intraosseous Growth.
    Cells, 2019, Dec-20, Volume: 9, Issue:1

    Metastatic castration resistant prostate cancer (mCRPC) relapses due to acquired resistance to docetaxel-based chemotherapy and remains a major threat to patient survival. In this report, we tested the effectiveness of a dual CXCR4/E-selectin antagonist, GM-I1359, in vitro and in vivo, as a single agent or in combination with docetaxel (DTX). This agent was compared to the single CXCR4 antagonist, CTCE-9908, and E-selectin antagonist, GMI-1271. Here we demonstrate that CXCR4 antagonism reduced growth and enhanced DTX treatment in PCa cell lines as well as restored DTX effectiveness in DTX-resistant cell models. The efficacy of dual antagonist was higher respect to those observed for single CXCR4 antagonism. GM1359 impacted bone marrow colonization and growth in intraventricular and intratibial cell injection models. The anti-proliferative effects of GMI-1359 and DTX correlated with decreased size, osteolysis and serum levels of both mTRAP and type I collagen fragment (CTX) in intra-osseous tumours suggesting that the dual CXCR4/E-selectin antagonist was a docetaxel-sensitizing agent for bone metastatic growth. Single agent CXCR4 (CTCE-9908) and E-selectin (GMI-1271) antagonists resulted in lower sensitizing effects compared to GMI-1359. These data provide a biologic rationale for the use of a dual E-selectin/CXCR4 inhibitor as an adjuvant to taxane-based chemotherapy in men with mCRPC to prevent and reduce bone metastases.

    Topics: Animals; Bone Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Docetaxel; Drug Synergism; E-Selectin; Glycolipids; Humans; Male; Mice; PC-3 Cells; Peptides; Prostatic Neoplasms, Castration-Resistant; Receptors, CXCR4; Small Molecule Libraries; Xenograft Model Antitumor Assays

2019
CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models.
    The Prostate, 2015, Volume: 75, Issue:12

    The majority of prostate cancer (Pca) patient morbidity can be attributed to bone metastatic events, which poses a significant clinical obstacle. Therefore, a better understanding of this phenomenon is imperative and might help to develop novel therapeutic strategies. Stromal cell-derived factor 1α (SDF-1α) and its receptor CXCR4 have been implicated as regulators of bone resorption and bone metastatic development, suggesting that agents able to suppress this signaling pathway may be used as pharmacological treatments. In this study we studied if two CXCR4 receptor antagonists, Plerixafor and CTE9908, may affect bone metastatic disease induced by Pca in preclinical experimental models. To verify the hypothesis that CXCR4 inhibition affects Pca metastatic disease, selective CXCR4 compounds, Plerixafor, and CTE9908, were tested in preclinical models known to generate bone lesions. Additionally, the expression levels of CXCR4 and SDF-1α were analyzed in a number of human tissues derived from primary tumors, lymph-nodes and osseous metastases of Pca as well as in a wide panel of human Pca cell lines to non-tumorigenic and tumorigenic phenotype.. Bone-derived Pca cells express higher CXCR4 levels than other Pca cell lines. This differential expression was also observed in human Pca samples. In vitro evidence supports the hypothesis that factors produced by bone microenvironment differentially sustain CXCR4 and SDF1-α expression with respect to prostate microenvironment determining increased efficacy toward Plerixafor. The use of SDF1-α neutralizing antibodies greatly reduced the increase of CXCR4 expression in cells co-cultured with bone stromal cells (BMSc) and to a lesser extent in cells co-cultured with prostate stromal cells (HPSc) and partially reduced SDF1-α Plerixafor efficacy. SDF-1α induced tumor cell migration and invasion, as well as MMP-9, MMP-2, and uPA expression, which were reduced by Plerixafor. The incidence of X-ray detectable bone lesions was significantly reduced following Plerixafor and CTE9908 treatment Kaplan-Meier probability plots showed a significant improvement in the overall survival of mice treated with Plerixafor and CTE9908. The reduced intra-osseous growth of PC3 and PCb2 tumor cells after intratibial injection, as a result of Plerixafor and CTE9908 treatment, correlated with decreased osteolysis and serum levels of both mTRAP and type I collagen fragments (CTX), which were significantly lower with respect to controls.. Our report provides novel information on the potential activity of CXCR4 inhibitors on the formation and progression of Pca bone and soft tissue metastases and supports a biological rationale for the use of these inhibitors in men at high risk to develop clinically evident bone lesions.

    Topics: Animals; Antineoplastic Agents; Antiviral Agents; Benzylamines; Blotting, Western; Bone Neoplasms; Cell Adhesion; Cell Movement; Chemokine CXCL12; Coculture Techniques; Cyclams; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Heterocyclic Compounds; Heterografts; Humans; Immunohistochemistry; Lymph Nodes; Lymphatic Metastasis; Male; Mice; Mice, Nude; Peptides; Prostatic Neoplasms; Receptors, CXCR4; Tomography, X-Ray Computed; Tumor Cells, Cultured; Vascular Endothelial Growth Factor A

2015
Emerging therapeutic targets in osteoncology.
    Oncology, 2011, Volume: 80, Issue:3-4

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Bone Neoplasms; Chemokine CXCL12; Denosumab; Humans; Molecular Targeted Therapy; Peptides; RANK Ligand; Receptors, CXCR4; Signal Transduction

2011
Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone.
    Oncology reports, 2009, Volume: 21, Issue:3

    Metastasis occurs, in part, due to tumor cell responses to chemokine secretion by ectopic organs or tissues. SDF-1 is constitutively expressed in tissues where metastases frequently develop while breast carcinoma cells express the receptor for SDF-1, CXCR4, which is correlated with increased bone metastasis and poor overall survival. We hypothesized that treatment with a CXCR4 antagonist, CTCE-9908, would decrease incidence of bone and lung metastasis. Treatment with CTCE-9908 (25 mg/kg) began the day prior to or the day of intravenous or intracardiac tumor cell inoculation of MDA-MB-231 human breast carcinoma cells expressing enhanced green fluorescent protein (GFP) into athymic mice. After 5 or 8 weeks (i.c. and i.v. injections, respectively), the presence of fluorescent foci at metastatic sites was assessed. Somewhat surprisingly, CTCE-9908 treatment did not decrease incidence of metastasis as hypothesized. However, CTCE-9908 did decrease metastatic burden (i.e., size of metastases) in all organs examined (lungs, bone, heart, liver, kidneys, pancreas and spleen). Based upon this and other studies, the use of CTCE-9908 is promising as an adjuvant therapy for metastatic disease.

    Topics: Animals; Antineoplastic Agents; Bone Neoplasms; Female; Humans; Lung Neoplasms; Mammary Neoplasms, Experimental; Mice; Mice, Nude; Peptides; Receptors, CXCR4; Xenograft Model Antitumor Assays

2009
A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer.
    The Journal of surgical research, 2009, Volume: 155, Issue:2

    CXCL12/CXCR4 signaling may be involved in tumor growth and angiogenesis, and homing of cancer cells to bone and other organs. Our purpose was to determine whether inhibition of CXCR4 with a peptide-based antagonist would reduce tumor growth and metastasis of breast cancer.. We used two mouse models of breast cancer. In the first model, 1 x 10(6) MDA-MB-231 breast cancer cells transfected with luciferase were implanted into the inguinal mammary fat pad to produce primary tumors. In the second model, 1 x 10(5) MDA-231-BSC12 cells were injected into the left cardiac ventricle to produce bone metastases. CTCE-9908, a peptide analog of CXCL12 that competitively binds to CXCR4, was used to test the effect of inhibiting CXCR4. Five mice from each mouse model were treated with CTCE-9908 (25 mg/kg, injected subcutaneously 5 d/wk). All mice were assessed weekly using bioluminescent imaging to quantify relative volumes of tumor burden.. Bioluminescencent imaging showed that the mice treated with CTCE-9908 had significantly less primary tumor burden than the control mice. At 5 and 6 wk, the mice treated with CTCE-9908 had a 7-fold reduction and 5-fold reduction in primary tumor burden, respectively. Treatment with CTCE-9908 also significantly inhibited the rate of metastases compared with the control group. At 5 and 6 wk, the mice treated with CTCE-9908 demonstrated a 9-fold reduction and 20-fold reduction in metastatic tumor burden, respectively.. Treatment with the CXCR4 antagonist CTCE-9908 significantly reduced metastasis as well as primary tumor growth in mouse models of breast cancer.

    Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Bone Neoplasms; Breast Neoplasms; Cell Line, Tumor; Disease Models, Animal; Female; Humans; Mice; Mice, Nude; Peptides; Receptors, CXCR4; Treatment Outcome; Xenograft Model Antitumor Assays

2009