crotamine and Melanoma

crotamine has been researched along with Melanoma* in 2 studies

Reviews

1 review(s) available for crotamine and Melanoma

ArticleYear
State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake.
    BioMed research international, 2014, Volume: 2014

    Animal venoms comprise a naturally selected cocktail of bioactive peptides/proteins and other molecules, each of which playing a defined role thanks to the highly specific interactions with diverse molecular targets found in the prey. Research focused on isolation, structural, and functional characterizations of novel natural biologics (bioactive peptides/proteins from natural sources) has a long way to go through from the basic science to clinical applications. Herein, we overview the structural and functional characteristics of the myoneurotoxin crotamine, firstly isolated from the South American rattlesnake venom. Crotamine is the first venom peptide classified as a natural cell penetrating and antimicrobial peptide (CPP and AMP) with a more pronounced antifungal activity. In contrast to other known natural CPPs and AMPs, crotamine demonstrates a wide spectrum of biological activities with potential biotechnological and therapeutic values. More recent studies have demonstrated the selective in vitro anticancer activity of crotamine. In vivo, using a murine melanoma model, it was shown that crotamine delays tumor implantation, inhibits tumor cells proliferation, and also increases the survival of mice engrafted with subcutaneous melanoma. The structural and functional properties and also the possible biotechnological applications of minimized molecules derived from crotamine are also discussed.

    Topics: Amino Acid Sequence; Animals; Anti-Infective Agents; Antineoplastic Agents; Cell Line; Cell-Penetrating Peptides; Crotalid Venoms; Crotalus; Humans; Melanoma; Mice; Models, Molecular; Molecular Sequence Data; South America

2014

Other Studies

1 other study(ies) available for crotamine and Melanoma

ArticleYear
Evaluation of tumor growth remission in a murine model for subcutaneous solid tumors - Benefits of associating the antitumor agent crotamine with mesoporous nanosilica particles to achieve improved dosing frequency and efficacy.
    International journal of pharmaceutics, 2023, Nov-05, Volume: 646

    Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.

    Topics: Animals; Antineoplastic Agents; Crotalid Venoms; Disease Models, Animal; Melanoma; Mice

2023