crocin has been researched along with Pulmonary-Arterial-Hypertension* in 2 studies
2 other study(ies) available for crocin and Pulmonary-Arterial-Hypertension
Article | Year |
---|---|
Effects of Crocin on CCL2/CCR2 Inflammatory Pathway in Monocrotaline-Induced Pulmonary Arterial Hypertension Rats.
Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary disease, in which pulmonary arterial remodeling is regarded as the prominent pathological feature. So far, the mechanism of PAH is still unclear, so its treatment remains a challenge. However, inflammation plays an important part in the occurrence and progression of PAH. It is well known that crocin has anti-inflammatory properties, so we investigated whether crocin could be a potential drug for the treatment of PAH rat models. Rats injected subcutaneously with monocrotaline (MCT) were treated with crocin via a gastric tube daily for four weeks. The results showed that crocin treatment significantly reduced the right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) in the PAH rat models. Moreover, crocin treatment reduced the proliferation of pulmonary arteriole smooth muscle cells (PASMCs). In addition, crocin treatment not only relieved inflammatory cell infiltration and collagen fiber hyperplasia in the lung and right ventricle, but also decreased the expression of the CCL2/CCR2 inflammatory pathway in the lung of PAH rat models. Furthermore, crocin treatment reduced the inflammatory cytokines and oxidative stress responses. In summary, crocin may play a protective role in MCT-induced PAH rats by alleviating inflammatory response, improving pulmonary arterial remodeling, and preventing PAH. Therefore, crocin as a new treatment for PAH may be quite worthy of consideration. Topics: Animals; Carotenoids; Chemokine CCL2; Disease Models, Animal; Monocrotaline; Pulmonary Arterial Hypertension; Pulmonary Artery; Rats; Receptors, CCR2; Vascular Remodeling | 2022 |
Contribution of reactive oxygen species via the OXR1 signaling pathway in the pathogenesis of monocrotaline-induced pulmonary arterial hypertension: The protective role of Crocin.
Pulmonary arterial hypertension (PAH) identified by progressive increase in pulmonary vascular resistance and pressure, ultimately leading to right ventricular failure and sudden death. Oxidation resistance 1 (OXR1) and its downstream target genes has a pivotal role for defense against oxidative stress. But its molecular function is unknown in respiratory system disorders. This study designed to determine whether PAH associated with oxidative stress and OXR1 signaling pathway modulation. Also, Crocin co-treatment evaluated to determine the possible role and mechanism in pulmonary arterial hypertension.. The PAH model was induced by a single dose of MCT. It was given intraperitoneal administration of Crocin or saline for 21 consecutive days the other groups in this study. In the last day of experiment, hemodynamic parameter and right ventricular hypertrophy was evaluated as PAH index. The expression levels of OXR1, P21 and Nrf2 genes were detected through RT-PCR. Moreover, oxidative stress index and antioxidant capacity were measured and histological examination were used to determine the lung tissue injuries.. Results of the current study demonstrated that the OXR1 and P21 gene expression significantly decrease in PAH which is associated with increase of lipid peroxidation and decrease antioxidant capacity in lung tissue. Crocin co-treatment significantly improved the hemodynamic, oxidative stress biomarkers and histological data of the PAH rats, which associated with increase of OXR1 and its downstream target genes.. This report reveals the critical role of OXR1 in pathogenesis of oxidative stress-related pulmonary disease. Current experiment also provides evidence that Crocin has a protective effect against MCT-induced pulmonary arterial hypertension by modulation of OXR1 signaling pathway in rats. Topics: Animals; Antioxidants; Carotenoids; Disease Models, Animal; Gene Expression Regulation; Hypertrophy, Right Ventricular; Lipid Peroxidation; Male; Mitochondrial Proteins; Monocrotaline; Oxidative Stress; Pulmonary Arterial Hypertension; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction | 2020 |