crocin has been researched along with Coronary-Artery-Disease* in 3 studies
1 trial(s) available for crocin and Coronary-Artery-Disease
Article | Year |
---|---|
Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: A randomized placebo-controlled clinical trial.
This trial evaluated the potential impacts of saffron aqueous extract (SAE) and its main carotenoid on some of the atherosclerosis-related gene expression and serum levels of oxidized low-density cholesterol (ox-LDL) and Monocyte chemoattractant protein 1 (MCP-1) in patients with coronary artery disease (CAD). Participants of this randomized controlled trial included 84 CAD patients who categorized into three groups: Group 1 received crocin (30 mg/day), Group 2 SAE (30 mg/day), and Group 3 placebo for 8 weeks. Gene expression of Sirtuin 1 (SIRT1), 5'-adenosine monophosphate-activated protein kinase (AMPK), Lectin-like oxidized LDL receptor 1 (LOX1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and MCP-1 in peripheral blood mononuclear cells assessed by real-time PCR. Furthermore, serum ox-LDL and MCP-1 levels measured at the beginning and end of the intervention. Compared with the placebo group, gene expression of SIRT1 and AMPK increased significantly in the crocin group (p = .001), and the expression of LOX1 and NF-κB decreased significantly (p = .016 and .004, respectively). Serum ox-LDL levels decreased significantly in the crocin group after the intervention (p = .002) while MCP-1 levels decreased both in crocin and SAE groups (p = .001). Crocin may have beneficial effects on CAD patients by increasing the gene expression of SIRT1 and AMPK and decreasing the expression of LOX1 and NF-κB. Topics: Adult; Aged; Carotenoids; Chemokine CCL2; Coronary Artery Disease; Crocus; Female; Gene Expression; Humans; Male; Middle Aged; NF-kappa B; Sirtuin 1 | 2020 |
2 other study(ies) available for crocin and Coronary-Artery-Disease
Article | Year |
---|---|
Effect of crocin on glycated human low-density lipoprotein: A protective and mechanistic approach.
Human low-density lipoprotein (LDL) is known to have a role in coronary artery diseases when it undergoes modification due to hyperglycaemic conditions. Plant products like crocin play an essential role in protecting against oxidative stress and in the production of advanced glycation end-products (A.G.E.s). In this study, the anti-glycating effect of crocin was analyzed using various biochemical, spectroscopic, and in silico approaches. Glycation-mediated oxidative stress was confirmed by nitroblue tetrazolium, carbonyl content, and lipid peroxidation assays, and it was efficiently protected by crocin in a concentration-dependent manner. A.N.S. fluorescence, thioflavin T (ThT) assay, and electron microscopy confirmed that the structural changes in LDL during glycation lead to the formation of fibrillar aggregates, which can be minimized by crocin treatment. Moreover, secondary structural perturbations in LDL were observed using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), where crocin was found to prevent the loss of secondary structure in glycated LDL. Spectroscopic studies like U.V. absorbance, fluorescence spectroscopy, CD, FTIR, and fluorescence resonance energy transfer (FRET) provided insights into the interaction mechanism between LDL and crocin. Molecular docking supports these results with a highly negative binding energy of -10.3 kcal/mol, suggesting the formation of a stable ldl-crocin complex. Our study indicates that crocin may be a potent protective agent against coronary artery diseases by limiting the glycation of LDL in people with such disorders. Topics: Carotenoids; Coronary Artery Disease; Glycation End Products, Advanced; Humans; Lipoproteins, LDL; Molecular Docking Simulation | 2023 |
Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization.
Atherosclerosis is a chronic inflammatory disease arising from an imbalance in lipid levels and the accumulation of cholesterol-laden macrophages in the artery wall. Crocin is an active ingredient of Crocus sativus L. This study established a rat coronary atherosclerosis model induced by vitamin D3 (VD3), to explore the effect of Crocin on lipid metabolism, macrophage polarization and the activity of inflammatory proteins. The results revealed that Crocin decreased blood lipid levels by decreasing the levels of endothelin (ET), total cholesterol (TC), triglyceridelow (TG) and low-density lipoprotein cholesterol (LDL-c), elevating the level of high-density lipoprotein cholesterin (HDL-c). Crocin also inhibited lipogenesis by suppressing the expression of lipogenesis-related proteins and elevating lipid catabolism-related proteins. Moreover, Crocin effectively alleviated inflammation by suppressing the expression of pro-inflammatory cytokines and increasing levels of anti-inflammatory cytokines. We further found that Crocin promoted macrophage polarization to the M2 phenotype by reducing M1 markers (CD40 Topics: Animals; Carotenoids; Cell Differentiation; Cholecalciferol; Coronary Artery Disease; Crocus; Cytokines; Diet, High-Fat; Disease Models, Animal; Endothelins; Free Radical Scavengers; Humans; Lipid Metabolism; Lipogenesis; Macrophages; Male; NF-kappa B; Rats; Rats, Wistar; Th2 Cells | 2018 |