crizotinib has been researched along with Prostatic-Neoplasms* in 4 studies
4 other study(ies) available for crizotinib and Prostatic-Neoplasms
Article | Year |
---|---|
Integrative multi-omics and drug-response characterization of patient-derived prostate cancer primary cells.
Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies. Topics: Crizotinib; Humans; Male; Mucoproteins; Multiomics; Oncogene Proteins; Prostatic Neoplasms; Proteins | 2023 |
Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti-metastatic drug testing.
The establishment of clinically relevant models for tumor metastasis and drug testing is a major challenge in cancer research. Here we report a physiologically relevant assay enabling quantitative analysis of metastatic capacity of tumor cells following implantation into the chorioallantoic membrane (CAM). Engraftment of as few as 10 Topics: Animals; Antineoplastic Agents; Benzamides; Carcinoma, Non-Small-Cell Lung; Chick Embryo; Chorioallantoic Membrane; Cisplatin; Crizotinib; Docetaxel; Drug Screening Assays, Antitumor; Gefitinib; Male; Neoplasm Metastasis; Neoplastic Cells, Circulating; Nitriles; Phenylthiohydantoin; Prostatic Neoplasms | 2020 |
Drug approvals 2011: focus on companion diagnostics.
Topics: Androstenes; Androstenols; Antibodies, Monoclonal; Antineoplastic Agents; Axitinib; Biomarkers, Tumor; Brentuximab Vedotin; Carcinoma, Non-Small-Cell Lung; Clinical Trials as Topic; Crizotinib; Drug Approval; Female; Humans; Imidazoles; Immunoconjugates; Indazoles; Indoles; Ipilimumab; Lung Neoplasms; Male; Melanoma; Molecular Targeted Therapy; Neoplasms; Piperidines; Prostatic Neoplasms; Pyrazoles; Pyridines; Quinazolines; Rare Diseases; Sulfonamides; Survival Analysis; United States; United States Food and Drug Administration; Vemurafenib | 2012 |
Efficacy of c-Met inhibitor for advanced prostate cancer.
Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer.. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression.. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration.. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer. Topics: Animals; Cell Line, Tumor; Crizotinib; Disease Models, Animal; Drug Screening Assays, Antitumor; Gene Expression Regulation, Neoplastic; Humans; Indoles; Male; Mice; Neoplasm Transplantation; Phosphorylation; Piperidines; Prostatic Neoplasms; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Signal Transduction; Sulfones | 2010 |