crizotinib has been researched along with Osteosarcoma* in 4 studies
4 other study(ies) available for crizotinib and Osteosarcoma
Article | Year |
---|---|
Anticancer effect of crizotinib on osteosarcoma cells by targeting c-Met signaling pathway.
C-Met receptor and its ligand hepatocyte growth factor (HGF) are overexpressed in a variety of osteosarcoma cell lines and osteosarcoma pathological samples. It is suggested that c-Met/HGF plays an important role in the development of osteosarcoma. This study aimed to explore the anticancer effect of the c-Met-targeted drug crizotinib on osteosarcoma (OS) cells. The effects of crizotinib on the proliferation of osteosarcoma cells (SaOS2, MG-63 and MNNG) at different concentrations were detected by CCK8. Human osteosarcoma cell line MG-63 was used as an in vitro model to evaluate the effects of 2.5 μM crizotinib, 5.0 μM crizotinib and DMSO on cell apoptosis, cell cycle, migration and invasion. The expression of the c-Met signaling pathway in osteosarcoma cells was detected by western blot. The results showed that crizotinib inhibited the proliferation of cell lines in a concentration-dependent manner. Crizotinib significantly increased the number of apoptotic cells compared with the control group. Compared with the control group, crizotinib increased G0/G1 phase cells and decreased S phase cells. Compared with the control group, crizotinib inhibited the migration and invasion of osteosarcoma cells and decreased the expression of c-Met/Gab1/STAT5. This study will provide a promising therapeutic target and theoretical basis for the clinical application of crizotinib in osteosarcoma. Topics: Apoptosis; Bone Neoplasms; Cell Line, Tumor; Cell Proliferation; Crizotinib; Humans; Osteosarcoma; Signal Transduction | 2023 |
Anticancer effect of (S)-crizotinib on osteosarcoma cells by targeting MTH1 and activating reactive oxygen species.
MTH1 has become a new rising star in the field of 'cancer phenotypic lethality' and can be targeted in many kinds of tumors. This study aimed to explore the anticancer effect of MTH1-targeted drug (S)-crizotinib on osteosarcoma (OS) cells. We detected MTH1 expression in OS tissues and cells using immunohistochemistry and western blot. The effects of MTH1 on OS cell viability were explored using the siRNA technique and CCK8. The anticancer effects of the MTH1-targeted drug (S)-crizotinib on OS cells were explored by in-vitro assays. The intracellular 8-oxo-dGTP level and oxygen reactive species (ROS) of OS cells were detected by Cy3-conjugated avidin staining and dichlorofluorescein diacetate staining, respectively. The expression of MTH1 was significantly higher in OS tissues and cell lines than that in the corresponding adjacent tissues and osteoblastic cell line. The proliferation of OS cells was significantly inhibited through knockdown of MTH1 by siRNA technology. (S)-Crizotinib could inhibit the proliferation of OS cells with an increase in the apoptosis levels and causing G0/G1 arrest by targeting MTH1 and activating ROS. In addition, (S)-crizotinib could inhibit the migration of OS cells. (S)-Crizotinib could suppress the proliferation and migration, cause G0/G1 arrest, and increase the apoptosis level of OS cells by targeting MTH1 and activating ROS. This study will provide a promising therapeutic target and the theoretical basis for the clinical application of (S)-crizotinib in OS. Topics: Adolescent; Adult; Aged; Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Migration Inhibition; Cell Proliferation; Cell Survival; Child; Crizotinib; DNA Repair Enzymes; Female; Humans; Male; Middle Aged; Molecular Targeted Therapy; Osteosarcoma; Phosphoric Monoester Hydrolases; Reactive Oxygen Species; Young Adult | 2018 |
Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1.
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant and active polyphenol in green tea, has been demonstrated to have anticancer effects in a wide variety of human cancer. MicroRNAs (miRNAs) are a class of short noncoding RNAs and play important role in gene regulation and are critically involved in the pathogenesis and progression of human cancer. This study aims to investigate the effects of EGCG on osteosarcoma (OS) cells and elucidate the underlying mechanism. Cellular function assays revealed that EGCG inhibited cell proliferation, induced cell cycle arrest and promoted apoptosis of OS cells in vitro, and also inhibited the growth of transplanted tumors in vivo. By miRNA microarray and RT-qPCR analysis, miR-1 was found to be significantly upregulated in MG-63 and U-2OS treated by EGCG in dose- and time-dependent manners, and miR-1 downregulation by inhibitor mimics attenuated EGCG-induced inhibition on cell growth of OS cells. We also confirmed that miR-1 was also frequently decreased in clinical OS tumor tissues. Moreover, both EGCG and miR-1 mimic inhibited c-MET expression, and combination treatment with EGCG and c-MET inhibitor (crizotinib) had enhanced inhibitory effects on the growth of MG-63 and U-2OS cells. Taken together, these results suggest that EGCG has an anticancer effect on OS cells, at least partially, through regulating miR-1/c-MET interaction. Topics: Apoptosis; Catechin; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Combined Modality Therapy; Crizotinib; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Osteosarcoma; Polyphenols; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Tea | 2016 |
The orally bioavailable met inhibitor PF-2341066 inhibits osteosarcoma growth and osteolysis/matrix production in a xenograft model.
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Ninety percent of patients who present with metastatic and 30% to 40% of patients with nonmetastatic disease experience relapse, creating an urgent need for novel therapeutic strategies. The Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are important for mitosis, motility, and cell survival. Upregulation of Met/HGF signaling via receptor overexpression, amplification, or mutation drives the proliferation, invasiveness, and metastasis of a variety of cancer cells, including OS, prompting the development of Met/HGF inhibitors. OS cells depend on Met overexpression because introduction of dominant-negative Met inhibits in vivo tumorigenicity. Despite the importance of Met/HGF signaling in the development and maintenance of OS, the potential efficacy of pharmacologic Met inhibition in OS has been addressed only in in vitro studies. PF-2341066 is an orally bioavailable, selective ATP-competitive Met inhibitor that showed promising results recently in a phase I clinical trial in non-small cell lung cancer (NSCLC) patients. We tested the ability of PF-2341066 to inhibit malignant properties of osteosarcoma cells in vitro and orthotopic xenograft growth in vivo. In vitro, PF-2341066 inhibited osteosarcoma behavior associated with primary tumor growth (eg, proliferation and survival) as well as metastasis (eg, invasion and clonogenicity). In nude mice treated with PF-2341066 via oral gavage, the growth and associated osteolysis and extracortical bone matrix formation of osteosarcoma xenografts were inhibited by PF-2341066. PF-2341066 may represent an effective new systemic therapy for localized and potentially disseminated osteosarcoma. Topics: Administration, Oral; Animals; Apoptosis; Biological Availability; Bone Matrix; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Clone Cells; Crizotinib; Humans; Mice; Mice, Nude; Neoplasm Invasiveness; Osteogenesis; Osteolysis; Osteosarcoma; Phosphorylation; Piperidines; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Signal Transduction; Xenograft Model Antitumor Assays | 2011 |