crizotinib and Liposarcoma

crizotinib has been researched along with Liposarcoma* in 2 studies

Other Studies

2 other study(ies) available for crizotinib and Liposarcoma

ArticleYear
Combination therapy with c-met inhibitor and TRAIL enhances apoptosis in dedifferentiated liposarcoma patient-derived cells.
    BMC cancer, 2019, May-24, Volume: 19, Issue:1

    Liposarcoma (LPS) is a tumor derived from adipose tissue, and has the highest incidence among soft tissue sarcomas. Dedifferentiated liposarcoma (DDLPS) is a malignant tumor with poor prognosis. Recurrence and metastasis rates in LPS remain high even after chemotherapy and radiotherapy following complete resection. Therefore, the development of advanced treatment strategies for LPS is required. In the present study, we investigated the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor on cell viability and apoptosis in LPS and DDLPS cell lines of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor.. We analyzed cell viability after treatment with TRAIL and a c-Met inhibitor by measuring CCK8 and death receptor 5 (DR5) expression levels via fluorescence activated cell sorting (FACS) in both sarcoma cell lines and DDLPS patient-derived cells (PDCs). Moreover, we validated the effects of TRAIL alone and in combination with c-Met inhibitor on apoptosis in LPS cell lines and DDLPS PDCs via FACS.. Our results revealed that combination treatment with a c-Met inhibitor and human recombinant TRAIL (rhTRAIL) suppressed cell viability and induced cell death in both sarcoma cell lines and DDLPS PDCs, which showed varying sensitivities to rhTRAIL alone. Also, we confirmed that treatment with a c-Met inhibitor upregulated DR5 levels in sarcoma cell lines and DDLPS PDCs. In both TRAIL-susceptible and TRAIL-resistant cells subjected to combination treatment, promotion of apoptosis was dependent on DR5 upregulation.. From these results, our findings validated that DR5 up-regulation caused by combination therapy with a c-Met inhibitor and rhTRAIL enhanced TRAIL sensitization and promoted apoptosis. We propose the use of this approach to overcome TRAIL resistance and serve as a novel treatment strategy for clinical trials.

    Topics: Apoptosis; Cell Line, Tumor; Cell Survival; Crizotinib; Drug Resistance, Neoplasm; Drug Synergism; Drug Therapy, Combination; Flow Cytometry; Humans; Liposarcoma; Proto-Oncogene Proteins c-met; Receptors, TNF-Related Apoptosis-Inducing Ligand; Recombinant Proteins; TNF-Related Apoptosis-Inducing Ligand

2019
A primary undifferentiated pleomorphic sarcoma of the lumbosacral region harboring a LMNA-NTRK1 gene fusion with durable clinical response to crizotinib: a case report.
    BMC cancer, 2018, Aug-22, Volume: 18, Issue:1

    High-grade spindle cell sarcomas are a subtype of rare, undifferentiated pleomorphic sarcomas (UPSs) for which diagnosis is difficult and no specific treatment strategies have been established. The limited published data on UPSs suggest an aggressive clinical course, high rates of local recurrence and distant metastasis, and poor prognosis.. Here we present the unusual case of a 45-year-old male patient with a lumbosacral UPS extending into the sacrum. An initial diagnosis of a low-grade malignant spindle cell tumor was based on a tumor core biopsy. After complete extensive resection, the diagnosis of an UPS of the lumbosacral region was confirmed by excluding other types of cancers. Despite treatment with neoadjuvant radiotherapy, extensive resection, and adjuvant chemotherapy, the patient presented with multiple pulmonary metastases 3 months after surgery. The patient then began treatment with crizotinib at an oral dose of 450 mg per day, based on the detection of a LMNA-NTRK1 fusion gene in the tumor by next-generation sequencing. Over 18 months of follow-up through July 2018, the patient maintained a near-complete clinical response to crizotinib.. The LMNA-NTRK1 fusion was likely the molecular driver of tumorigenesis and metastasis in this patient, and the observed effectiveness of crizotinib treatment provides clinical validation of this molecular target. Molecular and cytogenetic evaluations are critical to accurate prognosis and treatment planning in cases of UPS, especially when treatment options are limited or otherwise exhausted. Molecularly targeted therapy of these rare but aggressive lesions represents a novel treatment option that may lead to fewer toxic side effects and better clinical outcomes.

    Topics: Carcinogenesis; Crizotinib; High-Throughput Nucleotide Sequencing; Humans; Lamin Type A; Liposarcoma; Lumbosacral Region; Male; Middle Aged; Oncogene Proteins, Fusion; Prognosis; Pyrazoles; Pyridines; Receptor, trkA; Sacrum; Sarcoma

2018