cra1000 has been researched along with Substance-Withdrawal-Syndrome* in 2 studies
2 other study(ies) available for cra1000 and Substance-Withdrawal-Syndrome
Article | Year |
---|---|
SB242084, flumazenil, and CRA1000 block ethanol withdrawal-induced anxiety in rats.
Anxiety-like behaviors are integral features of withdrawal from chronic ethanol exposure. In the experiments in the current study, we tested the hypothesis that anxiety can be regulated independently of other withdrawal signs and thus may be responsive to selective pharmacological agents. For 17 days, rats were fed ethanol (8-12 g/kg/day) in a liquid diet. Between 5 and 6 h after cessation of ethanol treatment, rats were tested in either the social interaction or plus-maze test of anxiety-like behavior after treatment with drugs hypothesized to have anxiolytic action. SB242084, flumazenil, and CRA1000-antagonists for 5-hydroxytryptamine (serotonin) (5-HT) 2C (5-HT(2C)), benzodiazepine, and corticotropin-releasing factor type 1 (CRF(1)) receptors, respectively-attenuated decreased social interaction without concomitant effects on activity measures. In contrast, ifenprodil, MDL 72222, and zolpidem-antagonists for N-methyl-d-aspartate (NMDA) and 5-HT(3) receptors, and agonist for benzodiazepine type 1 receptors, respectively-did not share this effect. Results for SB242084, flumazenil, and ifenprodil in the elevated plus-maze test were comparable to those in the social interaction test. These results support the suggestion that multiple neuronal systems (CRF(1), 5-HT(2C), and benzodiazepine receptors) contribute to the ethanol withdrawal sign of decreased social interaction. Furthermore, the selective effects of pharmacological agents on social interaction seem to indicate that this behavior can be dissociated from other signs. Because anxiety may be a complicating factor in alcohol withdrawal and relapse, future studies of this type are needed to provide focus for the effort to define selective and novel antianxiety agents for these disorders. Topics: Alcohol Drinking; Aminopyridines; Animals; Anxiety; Ethanol; Flumazenil; Indoles; Male; Pyridines; Pyrimidines; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome | 2004 |
Involvement of corticotropin-releasing factor receptor subtype 1 in morphine withdrawal regulation of the brain noradrenergic system.
Effects of pretreatment with the selective corticotropin-releasing factor (CRF) subtype 1 (CRF(1)) receptor antagonist, 2-(N-(2-methylthio-4-isopropylphenyl)-N-ethyl-amino-4-(4-(3-fluorophenyl)-1,2,3,6-tetrahydropyridin-1-yl)-6-methylpyrimidine (CRA1000) on the behavioral and biochemical changes after naloxone-precipitated morphine withdrawal were examined in ICR mice. Mice were chronically treated with morphine (8-45 mg/kg) for 5 days. Naloxone (3 mg/kg, s.c.) precipitated jumping, diarrhea, and body weight loss in morphine-dependent mice. In addition, 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) and noradrenaline turnover (MHPG/noradrenaline) levels in the cerebral cortex were increased following naloxone challenge in morphine-dependent mice. However, 5-hydroxytriptamine turnover did not alter the increase following naloxone challenge in morphine-dependent mice. Pretreatment with CRA1000 (20 mg/kg, i.p.) attenuated the incidence of withdrawal signs and naloxone-precipitated increases in noradrenaline turnover. These results suggest that the activation of CRF(1) receptor may play an important role in the elevation of noradrenaline transmission, but not in 5-hydroxytriptamine transmission, in the cerebral cortex, which projects from the locus coeruleus during morphine withdrawal. Topics: Animals; Behavior, Animal; Brain; Cerebral Cortex; Diarrhea; Male; Mice; Mice, Inbred ICR; Morphine; Morphine Dependence; Naloxone; Narcotic Antagonists; Norepinephrine; Pyridines; Pyrimidines; Receptors, Corticotropin-Releasing Hormone; Substance Withdrawal Syndrome; Time Factors | 2001 |