cps-49 has been researched along with Prostatic-Neoplasms* in 2 studies
2 other study(ies) available for cps-49 and Prostatic-Neoplasms
Article | Year |
---|---|
Low doses of CPS49 and flavopiridol combination as potential treatment for advanced prostate cancer.
Prostate cancer (PCa) still ranks as the second most frequently diagnosed cancer and metastatic castration resistant prostate cancer (CRPC) is a foremost cause of men cancer death around the world. The aim of this work was to investigate the selectivity and efficacy of new drug combinations for CRPC. We combined three compounds: paclitaxel (PTX: taxane that inhibits microtubule polymerization); 2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole- 1,3(2H)-dione (CPS49; redox-reactive thalidomide analog with anti-angiogenic properties) and flavopiridol (flavo: semisynthetic flavonoid that inhibits cyclin dependent kinases). We assessed CPS49-flavo or -PTX combinations cytotoxicity in a panel of PCa cell lines and PC3 xenografts. We found that CPS49 enhanced flavo or PTX cytotoxicity in human PCa cell lines while showed resistance in a non-tumor cell line. Furthermore, xenografts generated by inoculation of human prostate carcinoma PC3 cells in nu/nu mice showed that CPS49/flavo administration reduced tumor growth both after 2 weeks of co-treatment and after 1 week of pretreatment with a low dose of flavo followed by 2 weeks of co-treatment. PTX and CPS49 combination did not significantly reduce tumor growth in PC3 xenografts. Histological analysis of xenograft PC3 tumor samples from CPS49/flavo combination showed extensive areas of necrosis induced by the treatment. RT-qPCR array containing 23 genes from PC3 cells or PC3 xenografts exposed to CPS49/flavo combination showed that this treatment shut down the expression of several genes involved in adhesion, migration or invasion. In summary, the antitumor activity of CPS49 or flavopiridol was improved by the combination of these compounds and using half dose of that previously reported. Hence, CPS49-flavo combination is a promising new alternative for PCa therapy. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Drug Combinations; Flavonoids; Humans; Male; Mice; Mice, Nude; Piperidines; Prostatic Neoplasms; Thalidomide; Treatment Outcome | 2015 |
Antitumor effects of thalidomide analogs in human prostate cancer xenografts implanted in immunodeficient mice.
Thalidomide has demonstrated clinical activity in various malignancies including androgen-independent prostate cancer. The development of novel thalidomide analogs with better activity/toxicity profiles is an ongoing research effort. Our laboratory previously reported the in vitro antiangiogenic activity of the N-substituted thalidomide analog CPS11 and the tetrafluorinated analogs CPS45 and CPS49. The current study evaluated the therapeutic potential of these analogs in the treatment of prostate cancer in vivo.. Severely combined immunodeficient mice bearing s.c. human prostate cancer (PC3 or 22Rv1) xenografts were treated with the analogs at their maximum tolerated doses. Tumors were then excised and processed for ELISA and CD31 immunostaining to determine the levels of various angiogenic factors and microvessel density (MVD), respectively.. CPS11, CPS45, and CPS49 induced prominent and modest growth inhibition in PC3 and 22Rv1 tumors, respectively. Thalidomide had no effect on tumor growth in either xenograft. Vascular endothelial growth factor and basic fibroblast growth factor levels were not significantly altered by any of the thalidomide analogs or thalidomide in both PC3 and 22Rv1 tumors. CPS45, CPS49, and thalidomide significantly reduced PC3 tumor platelet-derived growth factor (PDGF)-AA levels by 58-82% (P < 0.05). Interestingly, treatment with the analogs and thalidomide resulted in differential down-regulation (>/=1.5-fold) of genes encoding PDGF and PDGF receptor isoforms as determined by DNA microarray analysis. Intratumoral MVD of 22Rv1 xenografts was significantly decreased by CPS45 and CPS49. CPS49 also reduced MVD in PC3 xenografts.. Thalidomide analogs CPS11 and 49 are promising anti-cancer agents. PDGF signaling pathway may be a potential target for these thalidomide analogs. Detailed microarray and functional analyses are under way with the aim of elucidating the molecular mechanism(s) of action of these thalidomide analogs. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Enzyme-Linked Immunosorbent Assay; Humans; Immunohistochemistry; Male; Mice; Mice, SCID; Microcirculation; Neoplasm Metastasis; Neoplasm Transplantation; Neovascularization, Pathologic; Oligonucleotide Array Sequence Analysis; Platelet Endothelial Cell Adhesion Molecule-1; Platelet-Derived Growth Factor; Prostatic Neoplasms; Protein Isoforms; Receptors, Platelet-Derived Growth Factor; Signal Transduction; Thalidomide; Time Factors | 2004 |