cp-99994 and Peripheral-Nervous-System-Diseases

cp-99994 has been researched along with Peripheral-Nervous-System-Diseases* in 2 studies

Other Studies

2 other study(ies) available for cp-99994 and Peripheral-Nervous-System-Diseases

ArticleYear
Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain.
    Experimental neurology, 2004, Volume: 186, Issue:2

    Peripheral nerve injury in humans can produce a persistent pain state characterized by spontaneous pain and painful responses to normally innocuous stimuli (allodynia). Here we attempt to identify some of the neurophysiological and neurochemical mechanisms underlying neuropathic pain using an animal model of peripheral neuropathy induced in male Sprague-Dawley rats by placing a 2-mm polyethylene cuff around the left sciatic nerve according to the method of Mosconi and Kruger. von Frey hair testing confirmed tactile allodynia in all cuff-implanted rats before electrophysiological testing. Rats were anesthetized and spinalized for extracellular recording from single spinal wide dynamic range neurons (L(3-4)). In neuropathic rats (days 11-14 and 42-52 after cuff implantation), ongoing discharge was greater and hind paw receptive field size was expanded compared to control rats. Activation of low-threshold sensory afferents by innocuous mechanical stimulation (0.2 N for 3 s) in the hind paw receptive field evoked the typical brief excitation in control rats. However, in neuropathic rats, innocuous stimulation also induced a nociceptive-like afterdischarge that persisted 2-3 min. This afterdischarge was never observed in control rats, and, in this model, is the distinguishing feature of the spinal neural correlate of tactile allodynia. Electrical stimulation of the sciatic nerve at 4 and at 20 Hz each produced an initial discharge that was identical in control and in neuropathic rats. This stimulation also produced an afterdischarge that was similar at the two frequencies in control rats. However, in neuropathic rats, the afterdischarge produced by 20-Hz stimulation was greater than that produced by 4-Hz stimulation. Given that acutely spinalized rats were studied, only peripheral and/or spinal mechanisms can account for the data obtained; as synaptic responses from C fibers begin to fail above approximately 5-Hz stimulation [Pain 46 (1991) 327], the afterdischarge in response to 20-Hz stimulation suggests a change mainly in myelinated afferents and a predominant role of these fibers in eliciting this afterdischarge. These data are consistent with the suggestion that peripheral neuropathy induces phenotypic changes predominantly in myelinated afferents, the sensory neurons that normally respond to mechanical stimulation. The NK-1 receptor antagonist, CP-99,994 (0.5 mg/kg, i.v.), depressed the innocuous pressure-evoked afterdischarge but not the brief initial d

    Topics: Afferent Pathways; Animals; Constriction; Disease Models, Animal; Dose-Response Relationship, Radiation; Electrophysiology; Evoked Potentials; Functional Laterality; Hindlimb; Male; Nerve Fibers, Myelinated; Neurokinin-1 Receptor Antagonists; Pain; Pain Measurement; Pain Threshold; Peripheral Nervous System Diseases; Physical Stimulation; Piperidines; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Neurokinin-1; Sciatic Nerve; Spinal Cord; Time Factors

2004
Gabapentin and the neurokinin(1) receptor antagonist CI-1021 act synergistically in two rat models of neuropathic pain.
    The Journal of pharmacology and experimental therapeutics, 2002, Volume: 303, Issue:2

    The present study examines the effect of combinations of gabapentin (Neurontin) and a selective neurokinin (NK)(1) receptor antagonist, 1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-2-benzofuranylmethyl ester (CI-1021), in two models of neuropathic pain. Dose responses to both gabapentin and CI-1021 were performed against static allodynia induced in the streptozocin and chronic constriction injury (CCI) models. Theoretical additive lines were calculated from these data. Dose responses to various fixed dose ratios of a gabapentin/CI-1021 combination were then examined in both models. In the streptozocin model, administration of gabapentin/CI-1021 combinations at fixed dose ratios of 1:1 and 60:1 resulted in an additive effect with dose response similar to the theoretical additive line. However, a synergistic interaction was seen after fixed dose ratios of 10:1, 20:1, and 40:1 with static allodynia completely blocked and the dose responses shifted approximately 8-, 30-, and 10-fold leftward, respectively, from the theoretical additive values. In the CCI model, after fixed dose ratios of 5:1 and 20:1, combinations of gabapentin and CI-1021 produced an additive response. At the fixed dose ratio of 10:1 static allodynia was completely blocked with an approximate 10-fold leftward shift of the dose response from the theoretical additive value, indicating synergy. The combination of gabapentin with a structurally unrelated NK(1) receptor antagonist, (2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine (CP-99,994), also produced synergy, at a fixed dose ratio of 20:1. This ratio completely blocked streptozocin-induced static allodynia and was approximately shifted leftward 5-fold from the theoretical additive value. These data suggest a synergistic interaction between gabapentin and NK(1) receptor antagonists in animal models of neuropathic pain.

    Topics: Acetates; Amines; Animals; Benzofurans; Carbamates; Cyclohexanecarboxylic Acids; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Drug Synergism; Excitatory Amino Acid Antagonists; Gabapentin; gamma-Aminobutyric Acid; Male; Neurokinin-1 Receptor Antagonists; Pain; Pain Measurement; Peripheral Nervous System Diseases; Piperidines; Rats; Rats, Sprague-Dawley

2002