cp-70429 has been researched along with Escherichia-coli-Infections* in 2 studies
2 other study(ies) available for cp-70429 and Escherichia-coli-Infections
Article | Year |
---|---|
[In vitro antibacterial activity of a new parenteral penem, sulopenem].
Eighty percent minimum inhibitory concentrations (MIC80) of sulopenem against clinically isolated 12 to 80 strains of each of different bacteria were as follows: methicillin-susceptible Staphylococcus aureus (MSSA): 0.20 micrograms/ml, methicillin-resistant S. aureus (MRSA): 50 micrograms/ml, coagulase-negative staphylococci: 3.13 micrograms/ml, Streptococcus pyogenes: < or = 0.013 microgram/ml, Streptococcus pneumoniae: < or = 0.013 microgram/ml, beta-streptococci: 0.05 microgram/ml, Enterococcus faecalis: 12.5 micrograms/ml, Enterococcus faecium: > 100 micrograms/ml, Escherichia coli CS2(R+): 0.10 microgram/ml, Klebsiella pneumoniae: 0.05 microgram/ml, Proteus mirabilis: 0.10 microgram/ml, Proteus vulgaris: 0.20 microgram/ml, Morganella morganii: 0.39 micrograms/ml, Providencia rettgeri: 3.13 micrograms/ml, Citrobacter freundii: 0.20 microgram/ml, Enterobacter cloacae: 0.39 microgram/ml, Serratia marcescens: 1.56 micrograms/ml, Pseudomonas aeruginosa: 50 micrograms/ml, Pseudomonas cepacia: 3.13 micrograms/ml, Xanthomonas maltophilia: > 100 micrograms/ml, Acinetobacter calcoaceticus: 1.56 micrograms/ml, ampicillin-resistant Haemophilus influenzae: 0.39 microgram/ml and Bacteroides fragil is: 0.20 microgram/ml, respectively. Sulopenem possesses a stronger activity than flomoxef or cefuzonam against Gram-positive bacteria, the strongest activity among the antibiotics tested against Gram-negative bacteria except P. aeruginosa. Sulopenem has stronger affinities than imipenem to all fractions of PBPs of S. aureus, E. coli, P. vulgaris, S. marcescens, even of P. aeruginosa. Affinities of sulopenem to PBPs-1 and -3 of S. aureus, PBP-2 of E. coli were much stronger than those of imipenem (IPM). Sulopenem generally has small Ki values to all types of beta-lactamases and also has stronger permanent inactivation effect to Ia and IIb types of beta-lactamases than IPM. No synergistic bactericidal activity of sulopenem was apparent with serum complement. However, synergism of sulopenem with macrophages was prominent in bactericidal activity. The cells of E. coli were well phagocytosed and rapidly digested by cultured macrophages in the presence of a higher than 1/8 MIC of sulopenem. Moreover, sulopenem was more stable than imipenem against swine and human dehydropeptidase-Is. Sulopenem is one of the antibiotics that do not induce the appearance of subclones resistant to the drug. Topics: Animals; Anti-Bacterial Agents; Bacteria; Bacterial Proteins; beta-Lactam Resistance; beta-Lactamase Inhibitors; beta-Lactams; Carrier Proteins; Cells, Cultured; Escherichia coli Infections; Hexosyltransferases; Imipenem; Lactams; Macrophages; Male; Mice; Mice, Inbred ICR; Muramoylpentapeptide Carboxypeptidase; Penicillin-Binding Proteins; Peptidyl Transferases | 1996 |
[In vitro and in vivo activities of sulopenem compared with those of imipenem and cephalosporins].
The in vitro and in vivo antibacterial activities of sulopenem (CP-70,429),a new parenteral penem antibiotic, were compared with those of imipenem (IPM), flomoxef, cefuzonam (CZON) and cefotaxime. Sulopenem possessed broad-spectrum activities against Gram-positive bacteria and Gram-negative bacteria. Antibacterial activities of sulopenem against methicillin-sensitive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes and Streptococcus pneumoniae were equivalent to or somewhat superior to those of IPM. Against members of the family Enterobacteriaceae, sulopenem was 4- to 260-fold more active than reference antibiotics with broad-spectra. In a killing kinetics study for Haemophilus influenzae, sulopenem showed a 99.9% decrease of viable cells after 8 hours at a concentration of 0.20 micrograms/ml. This effect was obtained at a concentration 8-fold lower than that of IPM. The protective effects of sulopenem in murine experimental systemic infections were superior to those of imipenem/cilastatin. In murine experimental mixed infection with Escherichia coli and Bacteroides fragilis, sulopenem had lower ED50, in other words stronger antimicrobial activities than IPM. The therapeutic effect of sulopenem are related well with its MIC value. In guinea pigs experimental lung infection with Klebsiella pneumoniae, sulopenem was more effective than CZON or cefotiam. Topics: Animals; Anti-Bacterial Agents; Bacteroides fragilis; Bacteroides Infections; beta-Lactam Resistance; Cefotaxime; Ceftizoxime; Cephalosporins; Escherichia coli Infections; Gram-Negative Bacteria; Gram-Positive Bacteria; Guinea Pigs; Imipenem; Klebsiella Infections; Lactams; Lung Diseases; Mice; Mice, Inbred ICR; Thienamycins | 1996 |