cp-31398 and Adenocarcinoma

cp-31398 has been researched along with Adenocarcinoma* in 6 studies

Other Studies

6 other study(ies) available for cp-31398 and Adenocarcinoma

ArticleYear
Chemoprevention of spontaneous ovarian cancer in the domestic hen.
    Poultry science, 2017, Jun-01, Volume: 96, Issue:6

    The hen is an attractive animal model for in vivo testing of agents that thwart ovarian carcinogenesis because ovarian cancer in the domestic hen features clinical and molecular alterations that are similar to ovarian cancer in humans, including a high incidence of p53 mutations. The objective of the study was to test the potential ovarian cancer chemopreventive effect of the p53 stabilizing compound CP-31398 on hens that spontaneously present the ovarian cancer phenotype. Beginning at 79 wk of age, 576 egg-laying hens (Gallus domesticus) were randomized to diets containing different amounts of CP-31398 for 94 wk, 5 d, comprising a control group (C) (n = 144), which was fed a diet containing 0 ppm (mg/kg) of CP-31398; a low-dose treatment (LDT) group (n = 144), which was fed a diet containing 100 ppm of CP-31398; a moderate-dose treatment (MDT) group (n = 144) which was fed a diet containing 200 ppm of CP-31398; and a high-dose treatment (HDT) group (n = 144), which was fed a diet containing 300 ppm of CP-31398. Hens were killed at 174 wk of age to determine the incidence of ovarian and oviductal adenocarcinomas. Whereas the incidence of localized and metastatic ovarian cancers in the MDT and HDT groups was significantly lower (up to 77%) compared to levels in the C and LDT groups (P < 0.05), the incidence of oviductal cancer was unaffected by CP-31398. CP-31398 appears to be an effective tool for chemoprevention against ovarian malignancies, but does not appear to affect oviductal malignancies.

    Topics: Adenocarcinoma; Animal Feed; Animals; Chemoprevention; Chickens; Diet; Female; Genes, p53; Genital Neoplasms, Female; Ovarian Neoplasms; Oviducts; Oviposition; Pyrimidines

2017
Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine.
    Biochimica et biophysica acta, 2015, Volume: 1853, Issue:1

    Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.

    Topics: Adenocarcinoma; Antimetabolites, Antineoplastic; Apoptosis; Autophagy; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Drug Resistance, Neoplasm; Gemcitabine; Humans; Mutation; Pancreatic Neoplasms; Phosphorylation; Pyrimidines; Tumor Suppressor Protein p53

2015
Chemopreventive effects of the p53-modulating agents CP-31398 and Prima-1 in tobacco carcinogen-induced lung tumorigenesis in A/J mice.
    Neoplasia (New York, N.Y.), 2013, Volume: 15, Issue:9

    Lung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse) by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group) or 34 weeks (15 mice/group) to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001) lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001) lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation.

    Topics: Adenocarcinoma; Animals; Anticarcinogenic Agents; Apoptosis; Aza Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cell Transformation, Neoplastic; Chemoprevention; Cyclin-Dependent Kinase Inhibitor p21; Female; Lung Neoplasms; Mice; Mice, Inbred A; Nicotiana; Nitrosamines; Pyrimidines; Random Allocation; Tumor Suppressor Protein p53

2013
Inhibition of azoxymethane-induced colorectal cancer by CP-31398, a TP53 modulator, alone or in combination with low doses of celecoxib in male F344 rats.
    Cancer research, 2009, Oct-15, Volume: 69, Issue:20

    Tumor suppressor p53 plays a major role in colorectal cancer development. The present study explores the effects of p53-modulating agent CP-31398 alone and combined with celecoxib on azoxymethane-induced aberrant crypt foci (ACF) and colon adenocarcinomas in F344 rats. Maximum tolerated doses were 400 and 3,000 ppm for CP-31398 and celecoxib, respectively. ACF and tumor efficacy endpoints were carried out on azoxymethane-treated 7-week-old rats (48 per group) fed the control AIN-76A diet. Two weeks after carcinogen treatment, rats were fed the diets containing 0, 150, or 300 ppm CP-31398, 300 ppm celecoxib, or 150 ppm CP-31398 plus 300 ppm celecoxib. ACF and colon adenocarcinomas were determined at 8 and 48 weeks after azoxymethane treatment, respectively. Dietary CP-31398 was shown to suppress mean colonic total ACF by 43% and multicrypt ACF by 63%; dietary CP-31398 at 150 and 300 ppm suppressed adenocarcinoma incidence by 30.4% (P < 0.02) and 44% (P < 0.005), respectively, and adenocarcinoma multiplicity by 51% (P < 0.005) and 65% (P < 0.0001), respectively. Dietary celecoxib suppressed colon adenocarcinoma incidence (60%; P < 0.0003) and multiplicity (70%; P < 0.0001). Importantly, combination of low-dose CP-31398 and celecoxib suppressed colon adenocarcinoma incidence by 78% and multiplicity by 90%. Rats that were fed the high-dose CP-31398 or a combination of low-dose CP-31398 and celecoxib showed considerable enhancement of p53 and p21(WAF1/CIP) expression, apoptosis, and reduced tumor cell proliferation in colonic tumors. These observations show, for the first time, that CP-31398 possesses significant dose-dependent chemopreventive activity in a well-established colon cancer model and that a combination of low-dose CP-31398 and celecoxib significantly enhanced colon cancer chemopreventive efficacy.

    Topics: Adenocarcinoma; Animals; Apoptosis; Azoxymethane; Blotting, Western; Carcinogens; Celecoxib; Cell Proliferation; Colorectal Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dinoprostone; Drug Therapy, Combination; Immunoenzyme Techniques; In Situ Nick-End Labeling; Male; Maximum Tolerated Dose; Membrane Proteins; Pyrazoles; Pyrimidines; Rats; Rats, Inbred F344; Sulfonamides; Tumor Suppressor Protein p53

2009
The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells.
    Cancer biology & therapy, 2009, Volume: 8, Issue:22

    The cancer stem cell hypothesis suggests that rare populations of tumor-initiating cells may be resistant to therapy, lead to tumor relapse and contribute to poor prognosis for cancer patients. We previously demonstrated the feasibility of p53 pathway restoration in p53-deficient tumor cell populations using small molecules including ellipticine or its derivatives. We now establish a single cell p53-regulated green fluorescent protein (EGFP)-reporter system in human DLD1 colon tumor cells expressing mutant p53 protein. We use these p53-EGFP reporter DLD1 cells to investigate the status of p53 transcriptional activity in putative colon cancer stem cell populations following exposure to p53 pathway-restoring drugs and/or classical chemotherapy. We demonstrate induction of p53-specific EGFP reporter fluorescence following overexpression of p53 family member p73 by an Adenovirus vector. We further show that p53-reporter activity is induced in DLD1 putative cancer stem cell side-populations analyzed by their Hoechst dye efflux properties following treatment with the p53 pathway restoring drug ellipticine. Combination of ellipticine with the cytotoxic agent 5-fluorouracil resulted in increased cytotoxicity as compared to either agent alone and this was associated with depletion of putative cancer stem cell populations as compared with 5-FU alone treatment. Our results support the feasibility of therapeutic targeting of mutant p53 in putative cancer stem cells as well as the potential to enhance cytotoxic chemotherapy.

    Topics: Adenocarcinoma; Antineoplastic Agents; Colonic Neoplasms; DNA-Binding Proteins; Drug Synergism; Ellipticines; Fluorouracil; Genes, p53; Genes, Reporter; Genes, Synthetic; Genetic Vectors; Humans; Mutation; Neoplasm Proteins; Neoplastic Stem Cells; Nuclear Proteins; Pyrimidines; Receptors, TNF-Related Apoptosis-Inducing Ligand; Recombinant Fusion Proteins; Tumor Protein p73; Tumor Suppressor Protein p53; Tumor Suppressor Proteins

2009
Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding.
    Molecular and cellular biology, 2003, Volume: 23, Issue:6

    CP-31398, a styrylquinazoline, emerged from a high throughput screen for therapeutic agents that restore a wild-type-associated epitope (monoclonal antibody 1620) on the DNA-binding domain of the p53 protein. We found that CP-31398 can not only restore p53 function in mutant p53-expressing cells but also significantly increase the protein level and promote the activity of wild-type p53 in multiple human cell lines, including ATM-null cells. Cells treated with CP-31398 undergo either cell cycle arrest or apoptosis. Further investigation showed that CP-31398 blocks the ubiquitination and degradation of p53 but not in human papillomavirus E6-expressing cells. Of note, CP-31398 does not block the physical association between p53 and MDM2 in vivo. Moreover, unlike the DNA-damaging agent adriamycin, which induces strong phosphorylation of p53 on serines 15 and 20, CP-31398 exposure leads to no measurable phosphorylation on these sites. We found that CP-31398 could also stabilize exogenous p53 in p53 mutant, wild-type, and p53-null human cells, even in MDM2-null p53(-/-) mouse embryonic fibroblasts. Our results suggest a model wherein CP-31398-mediated stabilization of p53 may result from reduced ubiquitination, leading to high levels of transcriptionally active p53. Further understanding of this mechanism may lead to novel strategies for p53 stabilization and tumor suppression in cancers, even those with absent ARF or high MDM2 expression.

    Topics: Adenocarcinoma; Animals; Ataxia Telangiectasia Mutated Proteins; Carcinoma, Non-Small-Cell Lung; Cell Cycle Proteins; Colonic Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; DNA Damage; DNA-Binding Proteins; Doxorubicin; Female; Fibroblasts; Gene Expression Regulation; Genes, p53; Humans; Lung Neoplasms; Lymphocytes; Mice; Mice, Knockout; Neoplasm Proteins; Nuclear Proteins; Oncogene Proteins, Viral; Ovarian Neoplasms; Phosphorylation; Phosphoserine; Protein Binding; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-mdm2; Pyrimidines; Receptors, TNF-Related Apoptosis-Inducing Ligand; Receptors, Tumor Necrosis Factor; Repressor Proteins; Transcription, Genetic; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Tumor Suppressor Proteins; Ubiquitin

2003