cp-101-606 and Disease-Models--Animal

cp-101-606 has been researched along with Disease-Models--Animal* in 12 studies

Reviews

1 review(s) available for cp-101-606 and Disease-Models--Animal

ArticleYear
Glutamate-based therapeutic approaches: NR2B receptor antagonists.
    Current opinion in pharmacology, 2006, Volume: 6, Issue:1

    Over the past decade, there have been major advances in our understanding of the role of glutamate and N-methyl-d-aspartate (NMDA) receptors in several disorders of the central nervous system, including stroke, Parkinson's disease, Huntington's disease and chronic/neuropathic pain. In particular, NR2B subunit-containing NMDA receptors have been the focus of intense study from both a physiological and a pharmacological perspective, with several pharmaceutical companies developing NR2B subtype-selective antagonists for several glutamate-mediated diseases. Recent studies have shown the importance of NR2B subunits for NMDA receptor localization and endocytosis, and have suggested a role for NR2B-containing NMDA receptors in the underlying pathophysiology of neurodegenerative disorders such as Alzheimer's and Huntington's diseases. Anatomical, biochemical and pharmacological studies over the past five years have greatly added to our understanding of the role of NR2B subunit-containing NMDA receptors in chronic and neuropathic pain states, and have shown that NR2B-mediated analgesic effects might be supra- rather than intra-spinally mediated, and that phosphorylation of the NR2B subunit could be responsible for the initiation and maintenance of the central sensitization seen in neuropathic pain states. These data will hopefully provide the impetus for development of novel compounds that use multiple approaches to modulate the activity of NR2B subunit-containing NMDA receptors, thus bringing to fruition the promise of therapeutic efficacy utilizing this approach.

    Topics: Animals; Brain Ischemia; Clinical Trials as Topic; Disease Models, Animal; Excitatory Amino Acid Antagonists; Glutamic Acid; Humans; Huntington Disease; Pain; Phenols; Piperidines; Protein Conformation; Receptors, N-Methyl-D-Aspartate

2006

Other Studies

11 other study(ies) available for cp-101-606 and Disease-Models--Animal

ArticleYear
Antidepressant-like effect of CP-101,606: Evidence of mTOR pathway activation.
    Molecular and cellular neurosciences, 2023, Volume: 124

    As a non-competitive N-methyl d-aspartate receptor antagonist, ketamine exerts rapid-onset and long-lasting antidepressant effects on depression, but some side effects limit its use. To identify a safer compound that may provide similar antidepressant effects, here we investigated whether CP-101,606, a selective NR2B receptor inhibitor, provides similar antidepressant effects and explored its underlying mechanisms.. To mimic depressive-like behavior, mice were subjected to chronic unpredictable mild stress (CUMS) for 21 days. Mice were treated with CP-101,606 at 10, 20, and 40 mg/kg doses for 7, 14, and 21 days, respectively, followed by a sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). Western blot analysis was performed on several targets (mTOR, p-mTOR, p70S6K, p-p70S6K, PSD-95, and GluA1), along with immunohistochemistry (GluA1) and immunofluorescence (p-mTOR) assays, using hippocampal tissue.. CP-101,606 at 20 and 40 mg/kg doses for 7 and 14 days and fluoxetine 10 mg/kg and CP-101606 20 mg/kg for 21 days ameliorated depression-like behaviors in the SPT, TST, and FST. The effects of CP-101,606 were associated with a reversal of the CUMS-induced decrease in mTOR (Ser2448) and p70S6K (Thr389) phosphorylation and increasing PSD95 and GluA1 synthesis in the hippocampus.. Our results demonstrate that CP-101,606 produces antidepressant effects in CUMS mice, which may be mediated by mTOR signaling cascade upregulation. Our findings suggest the possible utility of CP-101,606 as a treatment for depression.

    Topics: Animals; Antidepressive Agents; Depression; Disease Models, Animal; Hippocampus; Mice; Ribosomal Protein S6 Kinases, 70-kDa; Stress, Psychological; TOR Serine-Threonine Kinases

2023
Traxoprodil Produces Antidepressant-Like Behaviors in Chronic Unpredictable Mild Stress Mice through BDNF/ERK/CREB and AKT/FOXO/Bim Signaling Pathway.
    Oxidative medicine and cellular longevity, 2023, Volume: 2023

    Traxoprodil is a selective N-methyl-d-aspartate receptor subunit 2B (NR2B) receptor inhibitor with rapid and long-lasting antidepressant effects. However, the appropriate dosage, duration of administration, and underlying mechanism of traxoprodil's antidepressant effects remain unclear. The purpose of this study is to compare the antidepressant effects of traxoprodil in different doses and different durations of administration and to explore whether traxoprodil exerts antidepressant effects via the brain-derived neurotrophic factor/extracellular signal-regulated kinase/cAMP-response element binding protein (BDNF/ERK/CREB) and protein kinase B/Forkhead box O/building information modelling (AKT/FOXO/Bim) signaling pathway. Mice were randomly divided into control group, chronic unpredictable mild stress (CUMS) + vehicle group, CUMS + traxoprodil (10 mg/kg, 20 mg/kg, and 40 mg/kg) groups, and CUMS + fluoxetine (5 mg/kg) group, followed by a forced swimming test, tail suspension test, and sucrose preference test. Western blotting and immunohistochemistry were used to measure the protein expression of BDNF, p-ERK1/2, p-CREB, NR2B, AKT, FOXO1, FOXO3a, and Bim. Compared with the control group, CUMS treatment increased immobility time; decreased sucrose preference; reduced expression of BDNF, p-ERK1/2, and p-CREB; and increased expression of AKT, FOXO, and Bim in the hippocampus. These alterations were ameliorated by administration of 20 mg/kg or 40 mg/kg of traxoprodil after 7 or 14 days of administration and with 10 mg/kg of traxoprodil or 5 mg/kg of fluoxetine after 21 days of administration. At the 7-day and 14-day timepoints, traxoprodil displayed dose-dependent antidepressant effects, with 20 and 40 mg/kg doses of traxoprodil producing rapid and strong antidepressant effects. However, at 21 days of administration, 10 and 20 mg/kg doses of traxoprodil exerted more pronounced antidepressant effects. The mechanism of traxoprodil's antidepressant effects may be closely related to the BDNF/ERK/CREB and AKT/FOXO/Bim signaling pathway.

    Topics: Animals; Antidepressive Agents; Brain-Derived Neurotrophic Factor; Depression; Disease Models, Animal; Fluoxetine; Hippocampus; Mice; Proto-Oncogene Proteins c-akt; Signal Transduction; Sucrose

2023
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Influence of the selective antagonist of the NR2B subunit of the NMDA receptor, traxoprodil, on the antidepressant-like activity of desipramine, paroxetine, milnacipran, and bupropion in mice.
    Journal of neural transmission (Vienna, Austria : 1996), 2017, Volume: 124, Issue:3

    Pre-clinical and clinical studies indicated that a blockade of the NMDA receptor complex creates new opportunities for the treatment of affective disorders, including depression. The aim of the present study was to assess the influence of traxoprodil (10 mg/kg) on the activity of desipramine (10 mg/kg), paroxetine (0.5 mg/kg), milnacipran (1.25 mg/kg), and bupropion (10 mg/kg), each at sub-therapeutic doses. Moreover, brain levels of traxoprodil and tested agents were determined using HPLC. The obtained results were used to ascertain the nature of occurring interaction between traxoprodil and studied antidepressants. The experiment was carried out on naïve adult male Albino Swiss mice. Traxoprodil and other tested drugs were administered intraperitoneally. The influence of traxoprodil on the activity of selected antidepressants was evaluated in forced swim test (FST). Locomotor activity was estimated to exclude false positive/negative data. To assess the influence of traxoprodil on the concentration of used antidepressants, their levels were determined in murine brains using HPLC. Results indicated that traxoprodil potentiated activity of all antidepressants examined in FST and the observed effects were not due to the increase in locomotor activity. Only in the case of co-administration of traxoprodil and bupropion, increased bupropion concentrations in brain tissue were observed. All tested agents increased the traxoprodil levels in the brain. Administration of a sub-active dose of traxoprodil with antidepressants from different chemical groups, which act via enhancing monoaminergic transduction, caused the antidepressant-like effect in FST in mice. The interactions of traxoprodil with desipramine, paroxetine, milnacipran, and bupropion occur, at least partially, in the pharmacokinetic phase.

    Topics: Analysis of Variance; Animals; Antidepressive Agents; Brain; Bupropion; Chromatography, High Pressure Liquid; Cyclopropanes; Depressive Disorder; Desipramine; Disease Models, Animal; Drug Interactions; Excitatory Amino Acid Antagonists; Injections, Intraperitoneal; Male; Mice; Milnacipran; Motor Activity; Paroxetine; Piperidines; Receptors, N-Methyl-D-Aspartate

2017
Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice.
    Metabolic brain disease, 2016, Volume: 31, Issue:4

    One of the newest substances, whose antidepressant activity was shown is traxoprodil, which is a selective antagonist of the NR2B subunit of the NMDA receptor. The main goal of the present study was to evaluate the effect of traxoprodil on animals' behavior using the forced swim test (FST), as well as the effect of traxoprodil (10 mg/kg) on the activity of antidepressants, such as imipramine (15 mg/kg), fluoxetine (5 mg/kg), escitalopram (2 mg/kg) and reboxetine (2.5 mg/kg). Serotonergic lesion and experiment using the selective agonists of serotonin receptors 5-HT1A and 5-HT2 was conducted to evaluate the role of the serotonergic system in the antidepressant action of traxoprodil. Brain concentrations of tested agents were determined using HPLC. The results showed that traxoprodil at a dose of 20 and 40 mg/kg exhibited antidepressant activity in the FST and it was not related to changes in animals' locomotor activity. Co-administration of traxoprodil with imipramine, fluoxetine or escitalopram, each in subtherapeutic doses, significantly affected the animals' behavior in the FST and, what is important, these changes were not due to the severity of locomotor activity. The observed effect of traxoprodil is only partially associated with serotonergic system and is independent of the effect on the 5-HT1A and 5-HT2 serotonin receptors. The results of an attempt to assess the nature of the interaction between traxoprodil and the tested drugs show that in the case of joint administration of traxoprodil and fluoxetine, imipramine or escitalopram, there were interactions in the pharmacokinetic phase.

    Topics: Animals; Antidepressive Agents; Behavior, Animal; Citalopram; Depression; Disease Models, Animal; Excitatory Amino Acid Antagonists; Fluoxetine; Imipramine; Mice; Motor Activity; Piperidines; Receptors, N-Methyl-D-Aspartate; Swimming; Treatment Outcome

2016
NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model.
    Behavioural brain research, 2015, Apr-01, Volume: 282

    The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID.

    Topics: Animals; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Corpus Striatum; Disease Models, Animal; Dyskinesia, Drug-Induced; Female; Levodopa; Phosphorylation; Piperidines; Proto-Oncogene Proteins c-fyn; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Tyrosine

2015
Behavioral deficits and cellular damage following developmental ethanol exposure in rats are attenuated by CP-101,606, an NMDAR antagonist with unique NR2B specificity.
    Pharmacology, biochemistry, and behavior, 2012, Volume: 100, Issue:3

    NMDAR-mediated excitotoxicity has been implicated in some of the impairments following fetal ethanol exposure. Previous studies suggest that both neuronal cell death and some of the behavioral deficits can be reduced by NMDAR antagonism during withdrawal, including antagonism of a subpopulation of receptors containing NR2B subunits. To further investigate NR2B involvement, we selected a compound, CP-101,606 (CP) which binds selectively to NR2B/2B stoichiometries, for both in vitro and in vivo analyses. For the in vitro study, hippocampal explants were exposed to ethanol for 10 days and then 24 h following removal of ethanol, cellular damage was quantified via propidium iodide fluorescence. In vitro ethanol withdrawal-associated neurotoxicity was prevented by CP (10 and 25 nM). In vivo ethanol exposure was administered on PNDs 1-7 with CP administered 21 h following cessation. Activity (PNDs 20-21), motor skills (PNDs 31-33), and maze navigation (PNDs 43-44) were all susceptible to ethanol insult; treatment with CP (15 mg/kg) rescued these deficits. Our findings show that CP-101,606, a drug that blocks the NR2B/2B receptor, can reduce some of the damaging effects of "3rd trimester" alcohol exposure in our rodent model. Further work is clearly warranted on the neuroprotective potential of this drug in the developing brain.

    Topics: Alcoholic Neuropathy; Animals; Animals, Newborn; Anxiety; Behavior, Animal; Cell Death; Disease Models, Animal; Excitatory Amino Acid Antagonists; Female; Fetal Alcohol Spectrum Disorders; Hippocampus; Learning Disabilities; Male; Motor Skills Disorders; Neurons; Neuroprotective Agents; Piperidines; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate

2012
Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease.
    Experimental neurology, 2010, Volume: 225, Issue:2

    N-methyl-D-aspartate receptor (NMDAR) mediated excitotoxicity is a probable proximate mechanism of neurodegeneration in Huntington disease (HD). Striatal neurons express the NR2B-NMDAR subunit at high levels, and this subunit is thought to be instrumental in causing excitotoxic striatal neuron injury. We evaluated the efficacy of 3 NR2B-selective antagonists in the R6/2 transgenic fragment model of HD. We evaluated ifenprodil (10 mg/kg; 100 mg/kg), RO25,6981 (10 mg/kg), and CP101,606 (30 mg/kg). Doses were chosen on the basis of pilot acute maximally tolerated dose studies. Mice were treated with subcutaneous injections twice daily. Outcomes included survival; motor performance declines assessed with the rotarod, balance beam task, and activity measurements; and post-mortem striatal volumes. No outcome measure demonstrated any benefit of treatments. Lack of efficacy of NR2B antagonists in the R6/2 model has several possible explanations including blockade of beneficial NMDAR mediated effects, inadequacy of the R6/2 model, and the existence of multiple proximate mechanisms of neurodegeneration in HD.

    Topics: Animals; Corpus Striatum; Disease Models, Animal; Female; Huntington Disease; Kaplan-Meier Estimate; Male; Mice; Motor Activity; Organ Size; Phenols; Piperidines; Receptors, N-Methyl-D-Aspartate; Sex Factors; Treatment Outcome

2010
The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson's disease.
    Experimental neurology, 2004, Volume: 188, Issue:2

    In Parkinson's disease (PD), degeneration of the dopaminergic nigrostriatal pathway leads to enhanced transmission at NMDA receptors containing NR2B subunits. Previous studies have shown that some, but not all, NR2B-containing NMDA receptor antagonists alleviate parkinsonian symptoms in animal models of PD. Furthermore, enhanced NMDA receptor-mediated transmission underlies the generation of L-DOPA-induced dyskinesia (LID). The subunit content of NMDA receptors responsible for LID is not clear. Here, we assess the actions of the NMDA antagonist CP-101,606 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset model of Parkinson's disease. CP-101,606 is selective for NMDA receptors containing NR2B subunits, with higher affinity for NR1/NR2B complexes compared to ternary NR1/NR2A/NR2B complexes. CP-101,606 had no significant effect on parkinsonian symptoms when administered as monotherapy over a range of doses (0.1-10 mg/kg). CP-101,606 provided a modest potentiation of the anti-parkinsonian actions of L-DOPA (8 mg/kg), although, at doses of 1 and 3 mg/kg, CP-101,606 exacerbated LID. Results of this study provide further evidence of differences in the anti-parkinsonian activity and effects on LID of the NR2B subunit selective NMDA receptor antagonists. These distinctions may reflect disparities in action on NR1/NR2B as opposed to NR1/NR2A/NR2B receptors.

    Topics: Animals; Callithrix; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Drug Therapy, Combination; Dyskinesia, Drug-Induced; Female; Levodopa; Male; Motor Activity; Parkinsonian Disorders; Piperidines; Range of Motion, Articular; Receptors, N-Methyl-D-Aspartate; Treatment Failure

2004
Reduced brain infarct volume and improved neurological outcome by inhibition of the NR2B subunit of NMDA receptors by using CP101,606-27 alone and in combination with rt-PA in a thromboembolic stroke model in rats.
    Journal of neurosurgery, 2003, Volume: 98, Issue:2

    A novel postsynaptic antagonist of N-methyl-D-aspartate (NMDA) receptors, CP-101,606-27 may attenuate the effects of focal ischemia. In current experiments, the authors investigated its neuroprotective effect alone and in combination with recombinant tissue plasminogen activator (rt-PA) in thromboembolic focal cerebral ischemia in rats.. Forty-eight male Wistar rats underwent embolization of the right middle cerebral artery to produce focal cerebral ischemia. After random division into six groups (eight rats in each group), animals received: vehicle; low-dose (LD) CP-101, 606-27, 14.4 mg/kg; high-dose (HD) CP- 101,606-27, 28.8 mg/kg; rt-PA, 10 mg/kg; low-dose combination (LDC) CP- 101,606-27, 14.4 mg/kg plus rt-PA, 10 mg/kg; or high-dose combination (HDC) CP- 101,606-27, 28.8 mg/kg plus rt-PA, 10 mg/kg) 2 hours after induction of embolic stroke. Animals were killed 48 hours after the onset of focal ischemia. Brain infarction volume, neurobehavioral outcome, poststroke seizure activity, poststroke mortality, and intracranial hemorrhage incidence were observed and evaluated. Compared with vehicle-treated animals (39.4 +/- 8.6%) 2 hours posttreatment with CP-101,606-27 or rt-PA or in combination a significant reduction in the percentage of brain infarct volume was seen (LD CP-101,606-27: 20.8 +/- 14.3%, p < 0.05; HD CP-101,606-27: 10.9 +/- 3.2%, p < 0.001; rt-PA: 21.1 +/- 7.3%, p < 0.05; LDC, 18.6 +/- 11.5%, p < 0.05; and HDC: 15.2 +/- 10.1%, p < 0.05; compared with control: 39.4 +/- 8.6%). Combination of CP-101,606-27 with rt-PA did not show a significantly enhanced neuroprotective effect. Except for the control and LDC treatment groups, neurobehavioral outcome was significantly improved 24 hours after embolic stroke in animals in all other active therapeutic groups receiving CP-101,606-27 or rt-PA or in combination. The authors also observed that treatment with HD CP-101,606-27 decreased poststroke seizure activity.. The data in this study suggested that postischemia treatment with CP-101,606-27 is neuroprotective in the current stroke model; however, the authors also note that although rt-PA may offer modest protection when used alone, combination with CP-101,606-27 did not appear to enhance its effects.

    Topics: Animals; Brain Infarction; Disease Models, Animal; Drug Therapy, Combination; Male; Nervous System Diseases; Neuroprotective Agents; Piperidines; Plasminogen Activators; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Recombinant Proteins; Severity of Illness Index; Stroke; Thromboembolism; Tissue Plasminogen Activator

2003
The neuroprotective effect of the forebrain-selective NMDA antagonist CP101,606 upon focal ischemic brain damage caused by acute subdural hematoma in the rat.
    Journal of neurotrauma, 1997, Volume: 14, Issue:6

    The neuroprotective effects of drugs that act against excitotoxic damage, caused by glutamate, are well described in focal ischemia, but behavioral effects, and apparent failure in clinical trials of "first-generation" competitive N-methyl D-aspartate (NMDA) antagonists, such as Selfotel (CGS19755), has led to interest in evaluating newer NMDA antagonists with fewer behavioral effects. We have therefore evaluated the neuroprotective effect of a new forebrain-selective polyamine site NMDA antagonist, CP101,606 in a rat subdural hematoma (SDH) model. An SDH was produced by slow injection of 0.4 ml autologous blood into the parietal subdural space. Brain damage was assessed histologically at eight coronal planes, in animals sacrificed 4 h after induction of hematoma. The drug was infused 30 min after induction of SDH. The reductions of ischemic brain damage achieved by CP101,606, was 29% for the low dose and 37% for the high dose. This novel glutamate antagonist has shown a magnitude of neuroprotection which is comparable with that seen with "first-generation" NMDA antagonists such as MK801, D-CPP-ene and CGS19755, in this same model. This new agent is claimed to have fewer psychomotor and behavioral effects than MK801, D-CPP-ene, and CGS19755.

    Topics: Animals; Brain Ischemia; Disease Models, Animal; Excitatory Amino Acid Antagonists; Hematoma, Subdural; Male; Neuroprotective Agents; Piperidines; Prosencephalon; Rats; Rats, Sprague-Dawley

1997
chemdatabank.com