coumestrol has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 3 studies
2 review(s) available for coumestrol and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review.
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required. Topics: Benzhydryl Compounds; Coumestrol; Dioxins; Endocrine Disruptors; Environmental Pollutants; Genistein; Humans; Lipid Metabolism; Non-alcoholic Fatty Liver Disease; Phenols; Phytoestrogens; Polychlorinated Biphenyls | 2021 |
Antioxidant dietary approach in treatment of fatty liver: New insights and updates.
Non-alcoholic fatty liver disease (NAFLD) is a common clinicopathological condition, encompassing a range of conditions caused by lipid deposition within liver cells. To date, no approved drugs are available for the treatment of NAFLD, despite the fact that it represents a serious and growing clinical problem in the Western world. Identification of the molecular mechanisms leading to NAFLD-related fat accumulation, mitochondrial dysfunction and oxidative balance impairment facilitates the development of specific interventions aimed at preventing the progression of hepatic steatosis. In this review, we focus our attention on the role of dysfunctions in mitochondrial bioenergetics in the pathogenesis of fatty liver. Major data from the literature about the mitochondrial targeting of some antioxidant molecules as a potential treatment for hepatic steatosis are described and critically analysed. There is ample evidence of the positive effects of several classes of antioxidants, such as polyphenols ( Topics: Animals; Anthocyanins; Antioxidants; Carotenoids; Catechin; Coumestrol; Curcumin; Energy Metabolism; Fatty Liver; Glucosinolates; Humans; Imidoesters; Isothiocyanates; Lipogenesis; Mitochondria; Non-alcoholic Fatty Liver Disease; Nutritional Sciences; Oxidative Stress; Oximes; Polyphenols; Quercetin; Resveratrol; Stilbenes; Sulfoxides; Xanthophylls | 2017 |
1 other study(ies) available for coumestrol and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Coumestrol as a new substance that may diminish lipid precursors of the inflammation in steatotic primary rat hepatocytes.
Coumestrol is a phytoestrogen found in various plant foods. Increasing evidence ascertained its robust anti-inflammatory, anti-oxidative properties likewise ability to mitigate insulin resistance. Thus, it may be a potential medicine in the treatment of many metabolic disorders, including obesity, type 2 diabetes (T2D) as well as non-alcoholic fatty liver disease (NAFLD). In this study, we aimed to shed some light on its influence on the accumulation of certain lipid fractions and the expression of pro-inflammatory proteins in primary rat hepatocytes during the lipid-overload state. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. It was followed by incubation of the cells with the presence or absence of palmitic acid and/or coumestrol. The accumulation of lipid fractions was assessed by gas-liquid chromatography (GLC) whereas the expression of the proteins was evaluated by the Western blot technique. Treatment with coumestrol in the state of increased fatty acids availability led to the deposition of triacylglycerols rather than diacylglycerols, significantly decreased expression of proinflammatory and profibrotic cytokines, especially interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), as well as transforming growth factor β (TGF-β), and nuclear factor κβ (NF-κβ). Also, we observed a substantial diminution in proinflammatory enzymes expression. Taking into consideration the direction of the aforementioned changes, we may assume that coumestrol can ameliorate the array of factors leading to the development of steatosis, likewise counteracting progression to steatohepatitis, thus it may be a step forward to the long-awaited breakthrough in the treatment of NAFLD. Topics: Animals; Coumestrol; Diabetes Mellitus, Type 2; Fatty Acids; Hepatocytes; Inflammation; Liver; Non-alcoholic Fatty Liver Disease; Rats; Rats, Wistar | 2023 |