Page last updated: 2024-11-06

corticosterone and Diabetes Mellitus, Adult-Onset

corticosterone has been researched along with Diabetes Mellitus, Adult-Onset in 57 studies

Research Excerpts

ExcerptRelevanceReference
"Another pandemic disease is type II diabetes mellitus (T2D) that is estimated to affect half a billion people in the world."5.6216α-Bromoepiandrosterone as a new candidate for experimental diabetes-tuberculosis co-morbidity treatment. ( Baay-Guzman, G; Barrios-Payan, JA; Bini, E; Carranza, A; Chamberlin, W; Ge, Y; Hernández-Pando, R; López-Torres, MO; Marquina-Castillo, B; Mata-Espinosa, D; Ramos-Espinosa, O; Torre-Villalvazo, I; Torres, N; Tovar, A; Yepez, SH, 2021)
"Comorbid depression was induced by five inescapable foot-shocks (2mA, 2ms duration) at 10s intervals on days 1, 5, 7, and 10."5.46Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. ( Kumar, M; Nayak, PK; Shivavedi, N; Tej, GNVC, 2017)
"Corticosterone (CORT) and other glucocorticoids cause peripheral insulin resistance and compensatory increases in β-cell mass."3.79Exogenous glucocorticoids and a high-fat diet cause severe hyperglycemia and hyperinsulinemia and limit islet glucose responsiveness in young male Sprague-Dawley rats. ( Beaudry, JL; D'souza, AM; Riddell, MC; Teich, T; Tsushima, R, 2013)
"Although diabetes markedly altered body weight gain and serum protein glycosylation (assessed by fructosamine), there was no significant change in hepatic 11β-HSD1 reductase activity, with or without insulin treatment."3.76Effect of diabetes on enzymes involved in rat hepatic corticosterone production. ( Chen, R; Hyatt, T; McCormick, K; Mick, G; Wang, X, 2010)
" To investigate the possible mechanisms of antipsychotic-induced metabolic effects, we studied the impact of chronic administration of a typical antipsychotic drug (haloperidol) and an atypical antipsychotic (risperidone) to male rats on food intake, body weight, adiposity, and the circulating concentrations of hormones and metabolites that can influence energy homeostasis."3.73Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats. ( Dedova, I; Duffy, L; Herzog, H; Karl, T; Lee, NJ; Lin, EJ; Matsumoto, I; O'brien, E; Sainsbury, A; Slack, K, 2006)
"The present data indicate that testosterone plays a role in the development of obesity and NIDDM in young OLETF rats, but that changes of leptin production in white adipose tissue may not be important in the development of obesity in young OLETF rats."3.70Orchiectomy and response to testosterone in the development of obesity in young Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats. ( Abe, Y; Ibuki, Y; Mori, M; Ohtani, KI; Sato, N; Shimizu, H; Takahashi, H; Tsuchiya, T; Uehara, Y, 1998)
"Mycophenolic acid was detected in all cats."2.61 ( Abrams, G; Adolfsson, E; Agarwal, PK; Akkan, AG; Al Alhareth, NS; Alves, VGL; Armentano, R; Bahroos, E; Baig, M; Baldridge, KK; Barman, S; Bartolucci, C; Basit, A; Bertoli, SV; Bian, L; Bigatti, G; Bobenko, AI; Boix, PP; Bokulic, T; Bolink, HJ; Borowiec, J; Bulski, W; Burciaga, J; Butt, NS; Cai, AL; Campos, AM; Cao, G; Cao, Y; Čapo, I; Caruso, ML; Chao, CT; Cheatum, CM; Chelminski, K; Chen, AJW; Chen, C; Chen, CH; Chen, D; Chen, G; Chen, H; Chen, LH; Chen, R; Chen, RX; Chen, X; Cherdtrakulkiat, R; Chirvony, VS; Cho, JG; Chu, K; Ciurlino, D; Coletta, S; Contaldo, G; Crispi, F; Cui, JF; D'Esposito, M; de Biase, S; Demir, B; Deng, W; Deng, Z; Di Pinto, F; Domenech-Ximenos, B; Dong, G; Drácz, L; Du, XJ; Duan, LJ; Duan, Y; Ekendahl, D; Fan, W; Fang, L; Feng, C; Followill, DS; Foreman, SC; Fortunato, G; Frew, R; Fu, M; Gaál, V; Ganzevoort, W; Gao, DM; Gao, X; Gao, ZW; Garcia-Alvarez, A; Garza, MS; Gauthier, L; Gazzaz, ZJ; Ge, RS; Geng, Y; Genovesi, S; Geoffroy, V; Georg, D; Gigli, GL; Gong, J; Gong, Q; Groeneveld, J; Guerra, V; Guo, Q; Guo, X; Güttinger, R; Guyo, U; Haldar, J; Han, DS; Han, S; Hao, W; Hayman, A; He, D; Heidari, A; Heller, S; Ho, CT; Ho, SL; Hong, SN; Hou, YJ; Hu, D; Hu, X; Hu, ZY; Huang, JW; Huang, KC; Huang, Q; Huang, T; Hwang, JK; Izewska, J; Jablonski, CL; Jameel, T; Jeong, HK; Ji, J; Jia, Z; Jiang, W; Jiang, Y; Kalumpha, M; Kang, JH; Kazantsev, P; Kazemier, BM; Kebede, B; Khan, SA; Kiss, J; Kohen, A; Kolbenheyer, E; Konai, MM; Koniarova, I; Kornblith, E; Krawetz, RJ; Kreouzis, T; Kry, SF; Laepple, T; Lalošević, D; Lan, Y; Lawung, R; Lechner, W; Lee, KH; Lee, YH; Leonard, C; Li, C; Li, CF; Li, CM; Li, F; Li, J; Li, L; Li, S; Li, X; Li, Y; Li, YB; Li, Z; Liang, C; Lin, J; Lin, XH; Ling, M; Link, TM; Liu, HH; Liu, J; Liu, M; Liu, W; Liu, YP; Lou, H; Lu, G; Lu, M; Lun, SM; Ma, Z; Mackensen, A; Majumdar, S; Martineau, C; Martínez-Pastor, JP; McQuaid, JR; Mehrabian, H; Meng, Y; Miao, T; Miljković, D; Mo, J; Mohamed, HSH; Mohtadi, M; Mol, BWJ; Moosavi, L; Mosdósi, B; Nabu, S; Nava, E; Ni, L; Novakovic-Agopian, T; Nyamunda, BC; Nyul, Z; Önal, B; Özen, D; Özyazgan, S; Pajkrt, E; Palazon, F; Park, HW; Patai, Á; Patai, ÁV; Patzke, GR; Payette, G; Pedoia, V; Peelen, MJCS; Pellitteri, G; Peng, J; Perea, RJ; Pérez-Del-Rey, D; Popović, DJ; Popović, JK; Popović, KJ; Posecion, L; Povall, J; Prachayasittikul, S; Prachayasittikul, V; Prat-González, S; Qi, B; Qu, B; Rakshit, S; Ravelli, ACJ; Ren, ZG; Rivera, SM; Salo, P; Samaddar, S; Samper, JLA; Samy El Gendy, NM; Schmitt, N; Sekerbayev, KS; Sepúlveda-Martínez, Á; Sessolo, M; Severi, S; Sha, Y; Shen, FF; Shen, X; Shen, Y; Singh, P; Sinthupoom, N; Siri, S; Sitges, M; Slovak, JE; Solymosi, N; Song, H; Song, J; Song, M; Spingler, B; Stewart, I; Su, BL; Su, JF; Suming, L; Sun, JX; Tantimavanich, S; Tashkandi, JM; Taurbayev, TI; Tedgren, AC; Tenhunen, M; Thwaites, DI; Tibrewala, R; Tomsejm, M; Triana, CA; Vakira, FM; Valdez, M; Valente, M; Valentini, AM; Van de Winckel, A; van der Lee, R; Varga, F; Varga, M; Villarino, NF; Villemur, R; Vinatha, SP; Vincenti, A; Voskamp, BJ; Wang, B; Wang, C; Wang, H; Wang, HT; Wang, J; Wang, M; Wang, N; Wang, NC; Wang, Q; Wang, S; Wang, X; Wang, Y; Wang, Z; Wen, N; Wesolowska, P; Willis, M; Wu, C; Wu, D; Wu, L; Wu, X; Wu, Z; Xia, JM; Xia, X; Xia, Y; Xiao, J; Xiao, Y; Xie, CL; Xie, LM; Xie, S; Xing, Z; Xu, C; Xu, J; Yan, D; Yan, K; Yang, S; Yang, X; Yang, XW; Ye, M; Yin, Z; Yoon, N; Yoon, Y; Yu, H; Yu, K; Yu, ZY; Zhang, B; Zhang, GY; Zhang, H; Zhang, J; Zhang, M; Zhang, Q; Zhang, S; Zhang, W; Zhang, X; Zhang, Y; Zhang, YW; Zhang, Z; Zhao, D; Zhao, F; Zhao, P; Zhao, W; Zhao, Z; Zheng, C; Zhi, D; Zhou, C; Zhou, FY; Zhu, D; Zhu, J; Zhu, Q; Zinyama, NP; Zou, M; Zou, Z, 2019)
"Another pandemic disease is type II diabetes mellitus (T2D) that is estimated to affect half a billion people in the world."1.6216α-Bromoepiandrosterone as a new candidate for experimental diabetes-tuberculosis co-morbidity treatment. ( Baay-Guzman, G; Barrios-Payan, JA; Bini, E; Carranza, A; Chamberlin, W; Ge, Y; Hernández-Pando, R; López-Torres, MO; Marquina-Castillo, B; Mata-Espinosa, D; Ramos-Espinosa, O; Torre-Villalvazo, I; Torres, N; Tovar, A; Yepez, SH, 2021)
"Losartan treatment alleviated some of the T2DM- induced metabolic complications, abolished the T2DM-induced hypo activity, and normalized the corticosterone level, carbonylated proteins in brain, nociception and memory."1.56Protective effects of losartan on some type 2 diabetes mellitus-induced complications in Wistar and spontaneously hypertensive rats. ( Grozdanov, P; Kostadinova, N; Krumova, E; Mitreva-Staleva, J; Pechlivanova, D; Stoynev, A, 2020)
"Excessive glucocorticoid (GC) in type 2 diabetes mellitus (T2DM) reduces insulin sensitivity, impairs β-cell function, increases gluconeogenesis and glycogenolysis, impairs glucose uptake and metabolism, and reduces the insulinotropic effects of glucagon-like peptide 1."1.46Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. ( Jia, Z; Laudon, M; Li, M; Luo, X; Yue, Y; Zhang, J; Zhang, R; Zhou, J, 2017)
"Comorbid depression was induced by five inescapable foot-shocks (2mA, 2ms duration) at 10s intervals on days 1, 5, 7, and 10."1.46Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. ( Kumar, M; Nayak, PK; Shivavedi, N; Tej, GNVC, 2017)
"Obesity and type 2 diabetes have become a major public health problem worldwide."1.46Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes. ( Bornstein, SR; Brown, N; Brunssen, C; Eisenhofer, G; Frenzel, A; Hofmann, A; Jannasch, A; Mittag, J; Morawietz, H; Peitzsch, M; Weldon, SM, 2017)
"To induce type 1 diabetes, C57BL/6J mice were injected with streptozotocin and blood and hair samples were collected 28days following induction."1.46Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. ( Browne, CA; Erickson, RL; Lucki, I, 2017)
"Chromium is an important modulator in insulin and glucose metabolism."1.37Is chromium from stainless steel utensils responsible for epidemic of type 2 diabetes? ( Gambhir, PS; Phadke, MA, 2011)
"Treatment with leptin normalized fasting plasma glucose and was accompanied by lowered HbA1c, plasma glucagon, and triglyceride concentrations and expression of hepatic gluconeogenic enzymes compared with vehicle (P < 0."1.37Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. ( Bettaieb, A; Cummings, BP; Dill, R; Graham, JL; Haj, FG; Havel, PJ; Morton, GJ; Stanhope, KL, 2011)
"Obstructive sleep apnoea (OSA) and type 2 diabetes frequently co-exist and potentially interact haemodynamically and metabolically."1.35Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic beta-cell replication in mice. ( Alonso, LC; Garcia-Ocana, A; Minoguchi, K; O'Doherty, RM; O'Donnell, CP; Romano, LC; Rosa, TC; Yokoe, T, 2008)
"These results suggest that in type 2 diabetes, blood glucose derangement due to stress is presumably associated not only with changes in counterregulatory hormones involved in glucose metabolism, but also with stress-induced changes in eating behavior."1.31Environmental stress modifies glycemic control and diabetes onset in type 2 diabetes prone Otsuka Long Evans Tokushima Fatty (OLETF) rats. ( Eto, S; Kai, K; Kanda, K; Morimoto, I; Morita, E; Okada, Y; Uriu, K; Yamamoto, S, 2000)
"Corticosterone levels were lower in GK rat plasma than in normal Wistar rat plasma."1.29Diabetic GK rat plasma but not normal Wistar rat plasma induces insulin-stimulated DNA synthesis in primary cultured smooth muscle cells in GK rat aorta. ( Kimura, I; Kimura, M; Naitoh, T; Nakano, Y; Okabe, M, 1994)
"Whereas obesity was associated with only moderate glucose intolerance and insulin resistance in A/J mice, obese C57BL/6J mice showed clear-cut diabetes with fasting blood glucose levels of greater than 240 mg/dl and blood insulin levels of greater than 150 microU/ml."1.27Diet-induced type II diabetes in C57BL/6J mice. ( Cochrane, C; Feinglos, MN; Kuhn, CM; McCubbin, JA; Surwit, RS, 1988)

Research

Studies (57)

TimeframeStudies, this research(%)All Research%
pre-19903 (5.26)18.7374
1990's7 (12.28)18.2507
2000's17 (29.82)29.6817
2010's22 (38.60)24.3611
2020's8 (14.04)2.80

Authors

AuthorsStudies
Morgan, SA1
Gathercole, LL1
Hassan-Smith, ZK1
Tomlinson, J1
Stewart, PM1
Lavery, GG1
Chaves, ADS3
Magalhães, NS3
Insuela, DBR3
Silva, PMRE3
Martins, MA3
Carvalho, VF3
Hashim, KN1
Chin, KY1
Ahmad, F1
Harvey, I1
Richard, AJ1
Mendoza, TM1
Stephens, JM1
Bobenko, AI1
Heller, S1
Schmitt, N1
Cherdtrakulkiat, R1
Lawung, R1
Nabu, S1
Tantimavanich, S1
Sinthupoom, N1
Prachayasittikul, S1
Prachayasittikul, V1
Zhang, B1
Wu, C1
Zhang, Z2
Yan, K1
Li, C2
Li, Y4
Li, L4
Zheng, C1
Xiao, Y1
He, D1
Zhao, F1
Su, JF1
Lun, SM1
Hou, YJ1
Duan, LJ1
Wang, NC1
Shen, FF1
Zhang, YW1
Gao, ZW1
Li, J5
Du, XJ1
Zhou, FY1
Yin, Z1
Zhu, J2
Yan, D1
Lou, H1
Yu, H1
Feng, C1
Wang, Z1
Wang, Y4
Hu, X1
Li, Z2
Shen, Y2
Hu, D1
Chen, H1
Wu, X1
Duan, Y1
Zhi, D1
Zou, M2
Zhao, Z1
Zhang, X2
Yang, X2
Zhang, J4
Wang, H1
Popović, KJ1
Popović, DJ1
Miljković, D1
Lalošević, D1
Čapo, I1
Popović, JK1
Liu, M1
Song, H2
Xing, Z1
Lu, G1
Chen, D1
Valentini, AM1
Di Pinto, F1
Coletta, S1
Guerra, V1
Armentano, R1
Caruso, ML1
Gong, J1
Wang, N1
Bian, L1
Wang, M1
Ye, M1
Wen, N1
Fu, M1
Fan, W1
Meng, Y1
Dong, G1
Lin, XH1
Liu, HH1
Gao, DM1
Cui, JF1
Ren, ZG1
Chen, RX1
Önal, B1
Özen, D1
Demir, B1
Akkan, AG1
Özyazgan, S1
Payette, G1
Geoffroy, V1
Martineau, C1
Villemur, R1
Jameel, T1
Baig, M1
Gazzaz, ZJ1
Tashkandi, JM1
Al Alhareth, NS1
Khan, SA1
Butt, NS1
Wang, J2
Geng, Y1
Zhang, Y3
Wang, X3
Liu, J3
Basit, A1
Miao, T1
Liu, W3
Jiang, W1
Yu, ZY1
Wu, L2
Qu, B1
Sun, JX1
Cai, AL1
Xie, LM1
Groeneveld, J1
Ho, SL1
Mackensen, A1
Mohtadi, M1
Laepple, T1
Genovesi, S1
Nava, E1
Bartolucci, C1
Severi, S1
Vincenti, A1
Contaldo, G1
Bigatti, G1
Ciurlino, D1
Bertoli, SV1
Slovak, JE1
Hwang, JK1
Rivera, SM1
Villarino, NF1
Li, S1
Cao, G1
Ling, M1
Ji, J1
Zhao, D1
Sha, Y1
Gao, X1
Liang, C2
Guo, Q1
Zhou, C1
Ma, Z1
Xu, J1
Wang, C1
Zhao, W1
Xia, X1
Jiang, Y1
Peng, J1
Jia, Z2
Li, F1
Chen, X2
Mo, J1
Zhang, S2
Li, X1
Huang, T1
Zhu, Q1
Wang, S1
Ge, RS1
Fortunato, G1
Lin, J2
Agarwal, PK1
Kohen, A1
Singh, P1
Cheatum, CM1
Zhu, D1
Hayman, A1
Kebede, B1
Stewart, I1
Chen, G1
Frew, R1
Guo, X1
Gong, Q1
Borowiec, J1
Han, S1
Zhang, M2
Willis, M1
Kreouzis, T1
Yu, K1
Chirvony, VS1
Sekerbayev, KS1
Pérez-Del-Rey, D1
Martínez-Pastor, JP1
Palazon, F1
Boix, PP1
Taurbayev, TI1
Sessolo, M1
Bolink, HJ1
Lu, M1
Lan, Y1
Xiao, J1
Song, M1
Chen, C1
Huang, Q1
Cao, Y1
Ho, CT1
Qi, B1
Wang, Q1
Zhang, W1
Fang, L1
Xie, CL1
Chen, R2
Yang, S1
Xia, JM1
Zhang, GY1
Chen, CH1
Yang, XW1
Domenech-Ximenos, B1
Garza, MS1
Prat-González, S1
Sepúlveda-Martínez, Á1
Crispi, F1
Perea, RJ1
Garcia-Alvarez, A1
Sitges, M1
Kalumpha, M1
Guyo, U1
Zinyama, NP1
Vakira, FM1
Nyamunda, BC1
Varga, M1
Drácz, L1
Kolbenheyer, E1
Varga, F1
Patai, ÁV1
Solymosi, N1
Patai, Á1
Kiss, J1
Gaál, V1
Nyul, Z1
Mosdósi, B1
Valdez, M1
Moosavi, L1
Heidari, A1
Novakovic-Agopian, T1
Kornblith, E1
Abrams, G1
McQuaid, JR1
Posecion, L1
Burciaga, J1
D'Esposito, M1
Chen, AJW1
Samy El Gendy, NM1
Wesolowska, P1
Georg, D1
Lechner, W1
Kazantsev, P1
Bokulic, T1
Tedgren, AC1
Adolfsson, E1
Campos, AM1
Alves, VGL1
Suming, L1
Hao, W1
Ekendahl, D1
Koniarova, I1
Bulski, W1
Chelminski, K1
Samper, JLA1
Vinatha, SP1
Rakshit, S1
Siri, S1
Tomsejm, M1
Tenhunen, M1
Povall, J1
Kry, SF1
Followill, DS1
Thwaites, DI1
Izewska, J1
Kang, JH1
Yoon, Y1
Song, J1
Van de Winckel, A1
Gauthier, L1
Chao, CT1
Lee, YH1
Li, CM1
Han, DS1
Huang, JW1
Huang, KC1
Ni, L1
Güttinger, R1
Triana, CA1
Spingler, B1
Baldridge, KK1
Patzke, GR1
Shen, X1
Wang, B1
Xie, S1
Deng, W1
Wu, D1
Zhang, Q1
Voskamp, BJ1
Peelen, MJCS1
Ravelli, ACJ1
van der Lee, R1
Mol, BWJ1
Pajkrt, E1
Ganzevoort, W1
Kazemier, BM1
Tibrewala, R1
Bahroos, E1
Mehrabian, H1
Foreman, SC1
Link, TM1
Pedoia, V1
Majumdar, S1
Jablonski, CL1
Leonard, C1
Salo, P1
Krawetz, RJ1
Yoon, N1
Hong, SN1
Cho, JG1
Jeong, HK1
Lee, KH1
Park, HW1
Barman, S1
Konai, MM1
Samaddar, S1
Haldar, J1
Mohamed, HSH1
Li, CF1
Hu, ZY1
Deng, Z1
Chen, LH1
Su, BL1
Chu, K1
Liu, YP1
Li, YB1
Zhang, H2
Xu, C1
Zou, Z1
Wu, Z1
Xia, Y1
Zhao, P1
Wang, HT1
de Biase, S1
Pellitteri, G1
Gigli, GL1
Valente, M1
Pechlivanova, D1
Krumova, E1
Kostadinova, N1
Mitreva-Staleva, J1
Grozdanov, P1
Stoynev, A1
Shin, YK1
Hsieh, YS1
Han, AY1
Kwon, S1
Kang, P1
Seol, GH1
López-Torres, MO1
Marquina-Castillo, B1
Ramos-Espinosa, O1
Mata-Espinosa, D1
Barrios-Payan, JA1
Baay-Guzman, G1
Yepez, SH1
Bini, E1
Torre-Villalvazo, I1
Torres, N1
Tovar, A1
Chamberlin, W1
Ge, Y1
Carranza, A1
Hernández-Pando, R1
Ziarniak, K1
Dudek, M1
Matuszewska, J1
Bijoch, Ł1
Skrzypski, M1
Celichowski, J1
Sliwowska, JH1
Zhou, J1
Luo, X1
Li, M1
Yue, Y1
Laudon, M1
Zhang, R1
Yao, F1
Chen, L1
Fan, Z1
Teng, F1
Zhao, Y1
Guan, F1
Liu, Y1
Shivavedi, N1
Kumar, M1
Tej, GNVC1
Nayak, PK1
Huang, Z1
Cui, Z1
Qi, Z1
Beaudry, JL1
D'souza, AM1
Teich, T1
Tsushima, R1
Riddell, MC3
Patel, SS1
Udayabanu, M1
Kawashima, R1
Shimizu, T1
To, M1
Saruta, J1
Jinbu, Y1
Kusama, M1
Tsukinoki, K1
Meek, TH1
Morton, GJ2
Santi, D1
Granata, AR1
Pignatti, E1
Trenti, T1
Roli, L1
Bozic, R1
Zaza, S1
Pacchioni, C1
Rochira, V1
Carani, C1
Simoni, M1
Hofmann, A1
Peitzsch, M1
Brunssen, C1
Mittag, J1
Jannasch, A1
Frenzel, A1
Brown, N1
Weldon, SM1
Eisenhofer, G1
Bornstein, SR1
Morawietz, H1
Erickson, RL1
Browne, CA1
Lucki, I1
Yi, SS2
Hwang, IK2
Shin, JH1
Choi, JH1
Lee, CH1
Kim, IY1
Kim, YN1
Won, MH2
Park, IS1
Seong, JK2
Yoon, YS2
Loizzo, S2
Vella, S2
Loizzo, A2
Fortuna, A2
Di Biase, A1
Salvati, S1
Frajese, GV2
Agrapart, V1
Ramirez Morales, R1
Spampinato, S2
Campana, G2
Capasso, A2
Galietta, G2
Guarino, I2
Carta, S1
Carru, C1
Zinellu, A1
Ghirlanda, G1
Seghieri, G1
Renzi, P2
Franconi, F2
Costa, L1
Finlay, C1
Argoud, K1
Wilder, SP1
Ouali, F1
Ktorza, A1
Kaisaki, PJ1
Gauguier, D1
Hyatt, T1
Mick, G1
McCormick, K1
Yoo, KY1
Park, OK1
Yan, B1
Song, W1
Gambhir, PS1
Phadke, MA1
Cummings, BP1
Bettaieb, A1
Graham, JL1
Stanhope, KL1
Dill, R1
Haj, FG1
Havel, PJ1
Pereira, CD1
Azevedo, I1
Monteiro, R1
Martins, MJ1
Beddow, SA1
Samuel, VT1
Malendowicz, LK1
Neri, G1
Nussdorfer, GG1
Nowak, KW1
Zyterska, A1
Ziolkowska, A1
Osslund, TD1
Plant, MH1
Clogston, CL1
Nybo, RE1
Xiong, F1
Delaney, JM1
Jordan, SR1
Harrity, T1
Farrelly, D1
Tieman, A1
Chu, C1
Kunselman, L1
Gu, L1
Ponticiello, R1
Cap, M1
Qu, F1
Shao, C1
Wang, W1
Fenderson, W1
Chen, S1
Devasthale, P1
Jeon, Y1
Seethala, R1
Yang, WP1
Ren, J1
Zhou, M1
Ryono, D1
Biller, S1
Mookhtiar, KA1
Wetterau, J1
Gregg, R1
Cheng, PT1
Hariharan, N1
Lin, EJ1
Lee, NJ1
Slack, K1
Karl, T1
Duffy, L1
O'brien, E1
Matsumoto, I1
Dedova, I1
Herzog, H1
Sainsbury, A1
Takahashi, A1
Tabuchi, M1
Suzuki, W1
Iizuka, S1
Nagata, M1
Ikeya, Y1
Takeda, S1
Shimada, T2
Aburada, M1
Király, MA2
Bates, HE2
Yue, JT2
Goche-Montes, D1
Fediuc, S1
Park, E1
Matthews, SG2
Vranic, M2
Goche Montes, D1
Elliott, ME1
Noguchi, S1
Ohno, Y1
Aoki, N1
Jöhren, O1
Dendorfer, A1
Dominiak, P1
Raasch, W1
Yokoe, T1
Alonso, LC1
Romano, LC1
Rosa, TC1
O'Doherty, RM1
Garcia-Ocana, A1
Minoguchi, K1
O'Donnell, CP1
Bazhan, NV1
Makarova, EN1
Shevchenko, AIu1
Iakovleva, TV1
Yang, B1
Trump, RP1
McNulty, JA1
Clifton, LG1
Stimpson, SA1
Lin, P1
Pahel, GL1
Kimura, I1
Nakano, Y1
Naitoh, T1
Okabe, M1
Kimura, M1
Rebuffé-Scrive, M1
Surwit, R1
Feinglos, M1
Kuhn, C1
Rodin, J1
Yasuda, K1
Mori, A1
Ni, H1
Mercado-Asis, LB1
Murase, H1
Miura, K1
del Rey, A1
Monge-Arditi, G1
Klusman, I1
Besedovsky, HO1
Tojo, C2
Takao, T2
Nishioka, T2
Numata, Y1
Suemaru, S1
Hashimoto, K2
Shimizu, H1
Ohtani, KI1
Uehara, Y1
Abe, Y1
Takahashi, H1
Tsuchiya, T1
Sato, N1
Ibuki, Y1
Mori, M1
Liang, Y1
Jetton, TL1
Lubkin, M1
Meier, AH1
Cincotta, AH1
Kai, K1
Morimoto, I1
Morita, E1
Okada, Y1
Yamamoto, S1
Kanda, K1
Uriu, K1
Eto, S1
Takeshita, N1
Yoshino, T1
Mutoh, S1
Davani, B1
Khan, A1
Hult, M1
Mårtensson, E1
Okret, S1
Efendic, S1
Jörnvall, H1
Oppermann, UC1
Rodgers, BD1
Bernier, M1
Levine, MA1
Iwasaki, R1
Kigoshi, T1
Uchida, K1
Morimoto, S1
Yaginuma, K1
Surwit, RS1
Kuhn, CM1
Cochrane, C1
McCubbin, JA1
Feinglos, MN1

Reviews

3 reviews available for corticosterone and Diabetes Mellitus, Adult-Onset

ArticleYear
    Proceedings. Mathematical, physical, and engineering sciences, 2019, Volume: 475, Issue:2227

    Topics: Acetylcholine; Acinetobacter baumannii; Actinobacteria; Action Potentials; Adalimumab; Adaptation, P

2019
The role of leptin in diabetes: metabolic effects.
    Diabetologia, 2016, Volume: 59, Issue:5

    Topics: Animals; Blood Glucose; Brain; Corticosterone; Diabetes Mellitus, Type 2; Homeostasis; Humans; Lepti

2016
11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus.
    Diabetes, obesity & metabolism, 2012, Volume: 14, Issue:10

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adipose Tissue; Animals; Anti-Inflammatory Agents; Athe

2012

Trials

1 trial available for corticosterone and Diabetes Mellitus, Adult-Onset

ArticleYear
Effects of chronic administration of the phosphodiesterase inhibitor vardenafil on serum levels of adrenal and testicular steroids in men with type 2 diabetes mellitus.
    Endocrine, 2017, Volume: 56, Issue:2

    Topics: 17-alpha-Hydroxyprogesterone; Androgens; Androstenedione; Chromatography, Liquid; Corticosterone; Di

2017

Other Studies

53 other studies available for corticosterone and Diabetes Mellitus, Adult-Onset

ArticleYear
11β-HSD1 contributes to age-related metabolic decline in male mice.
    The Journal of endocrinology, 2022, 12-01, Volume: 255, Issue:3

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Corticosterone; Diabetes Mellitus, Type 2; Glu

2022
Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor.
    Frontiers in endocrinology, 2022, Volume: 13

    Topics: Alloxan; Animals; Captopril; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Typ

2022
Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor.
    Frontiers in endocrinology, 2022, Volume: 13

    Topics: Alloxan; Animals; Captopril; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Typ

2022
Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor.
    Frontiers in endocrinology, 2022, Volume: 13

    Topics: Alloxan; Animals; Captopril; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Typ

2022
Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor.
    Frontiers in endocrinology, 2022, Volume: 13

    Topics: Alloxan; Animals; Captopril; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Typ

2022
The Mechanism of Kelulut Honey in Reversing Metabolic Changes in Rats Fed with High-Carbohydrate High-Fat Diet.
    Molecules (Basel, Switzerland), 2023, Mar-20, Volume: 28, Issue:6

    Topics: Adiponectin; Adipose Tissue; Animals; Bees; Corticosterone; Diabetes Mellitus, Type 2; Diet, High-Fa

2023
Adipocyte STAT5 (signal transducer and activator of transcription 5) is not required for glucocorticoid-induced metabolic dysfunction.
    American journal of physiology. Endocrinology and metabolism, 2023, 11-01, Volume: 325, Issue:5

    Topics: Adipocytes; Animals; Corticosterone; Diabetes Mellitus, Type 2; Female; Glucocorticoids; Insulin Res

2023
Protective effects of losartan on some type 2 diabetes mellitus-induced complications in Wistar and spontaneously hypertensive rats.
    Metabolic brain disease, 2020, Volume: 35, Issue:3

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Brain; Corticosterone; Diabetes Mellitus, Experime

2020
Sex-specific susceptibility to type 2 diabetes mellitus and preventive effect of linalyl acetate.
    Life sciences, 2020, Nov-01, Volume: 260

    Topics: Animals; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat;

2020
16α-Bromoepiandrosterone as a new candidate for experimental diabetes-tuberculosis co-morbidity treatment.
    Clinical and experimental immunology, 2021, Volume: 205, Issue:2

    Topics: 11-beta-Hydroxysteroid Dehydrogenases; Androsterone; Animals; Antitubercular Agents; Comorbidity; Co

2021
Two weeks of moderate intensity locomotor training increased corticosterone concentrations but did not alter the number of adropin-immunoreactive cells in the hippocampus of diabetic type 2 and control rats.
    Acta histochemica, 2021, Volume: 123, Issue:5

    Topics: Animals; Arcuate Nucleus of Hypothalamus; Blood Proteins; Body Weight; Brain; Corticosterone; Diabet

2021
Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats.
    European journal of pharmacology, 2017, Oct-05, Volume: 812

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adiponectin; Adipose Tissue; Animals; Blood Glucose; Bo

2017
Interplay between H6PDH and 11β-HSD1 implicated in the pathogenesis of type 2 diabetes mellitus.
    Bioorganic & medicinal chemistry letters, 2017, 09-01, Volume: 27, Issue:17

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Carbohydrate Dehydrogenases; Cell Line, Tumor;

2017
Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats.
    Brain research, 2017, Nov-01, Volume: 1674

    Topics: Animals; Ascorbic Acid; Biogenic Monoamines; Blood Glucose; Comorbidity; Corticosterone; Cytokines;

2017
Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice.
    Journal of affective disorders, 2019, 03-01, Volume: 246

    Topics: Animals; Antidepressive Agents; bcl-2-Associated X Protein; Corticosterone; Depression; Depressive D

2019
Exogenous glucocorticoids and a high-fat diet cause severe hyperglycemia and hyperinsulinemia and limit islet glucose responsiveness in young male Sprague-Dawley rats.
    Endocrinology, 2013, Volume: 154, Issue:9

    Topics: Animals; Circadian Rhythm; Corticosterone; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models

2013
Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.
    Metabolic brain disease, 2014, Volume: 29, Issue:1

    Topics: Animals; Antidepressive Agents; Association Learning; Avoidance Learning; Blood Glucose; Corticoster

2014
Effects of stress on mouse β-defensin-3 expression in the upper digestive mucosa.
    Yonsei medical journal, 2014, Volume: 55, Issue:2

    Topics: Animals; beta-Defensins; Blood Glucose; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Me

2014
Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2017, Volume: 49, Issue:1

    Topics: Adrenal Cortex Hormones; Aldosterone; Animals; Corticosterone; Desoxycorticosterone; Diabetes Mellit

2017
Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus.
    Physiology & behavior, 2017, Sep-01, Volume: 178

    Topics: Animals; Blood Glucose; Body Weight; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Melli

2017
Regulatory mechanism of hypothalamo-pituitary-adrenal (HPA) axis and neuronal changes after adrenalectomy in type 2 diabetes.
    Journal of chemical neuroanatomy, 2010, Volume: 40, Issue:2

    Topics: Adrenalectomy; Analysis of Variance; Animals; Arginine Vasopressin; Blood Glucose; Blotting, Western

2010
Sexual dimorphic evolution of metabolic programming in non-genetic non-alimentary mild metabolic syndrome model in mice depends on feed-back mechanisms integrity for pro-opiomelanocortin-derived endogenous substances.
    Peptides, 2010, Volume: 31, Issue:8

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; 11-beta-Hydroxysteroid Dehydrogenase Type 2; Adrenocort

2010
Post-natal stress-induced endocrine and metabolic alterations in mice at adulthood involve different pro-opiomelanocortin-derived peptides.
    Peptides, 2010, Volume: 31, Issue:11

    Topics: Adrenocorticotropic Hormone; Animals; Animals, Newborn; Corticosterone; Corticotropin-Releasing Horm

2010
Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (Type 2) Goto-Kakizaki rat.
    Mammalian genome : official journal of the International Mammalian Genome Society, 2010, Volume: 21, Issue:9-10

    Topics: Animals; Blood Glucose; Chromosome Mapping; Corticosterone; Crosses, Genetic; Diabetes Mellitus, Typ

2010
Effect of diabetes on enzymes involved in rat hepatic corticosterone production.
    Journal of diabetes, 2010, Volume: 2, Issue:4

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Carbohydrate Dehydrogenases; Corticosterone; D

2010
Effect of treadmill exercise on blood glucose, serum corticosterone levels and glucocorticoid receptor immunoreactivity in the hippocampus in chronic diabetic rats.
    Neurochemical research, 2011, Volume: 36, Issue:2

    Topics: Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Type 2; Female; Hippocampus; Humans; Male

2011
Is chromium from stainless steel utensils responsible for epidemic of type 2 diabetes?
    Medical hypotheses, 2011, Volume: 77, Issue:1

    Topics: Blood Glucose; Chromium; Corticosterone; Diabetes Mellitus, Type 2; Humans; India; Insulin; Insulin

2011
Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats.
    Proceedings of the National Academy of Sciences of the United States of America, 2011, Aug-30, Volume: 108, Issue:35

    Topics: Animals; Blood Glucose; Body Weight; Corticosterone; Diabetes Mellitus, Type 2; Eating; eIF-2 Kinase

2011
Fasting hyperglycemia in the Goto-Kakizaki rat is dependent on corticosterone: a confounding variable in rodent models of type 2 diabetes.
    Disease models & mechanisms, 2012, Volume: 5, Issue:5

    Topics: Animals; Confounding Factors, Epidemiologic; Corticosterone; Diabetes Mellitus, Type 2; Disease Mode

2012
Prolonged exendin-4 administration stimulates pituitary-adrenocortical axis of normal and streptozotocin-induced diabetic rats.
    International journal of molecular medicine, 2003, Volume: 12, Issue:4

    Topics: Adrenocorticotropic Hormone; Aldosterone; Animals; Corticosterone; Diabetes Mellitus, Experimental;

2003
Crystal structure of murine 11 beta-hydroxysteroid dehydrogenase 1: an important therapeutic target for diabetes.
    Biochemistry, 2005, May-10, Volume: 44, Issue:18

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Amino Acid Sequence; Animals; Binding Sites; Catalytic

2005
Muraglitazar, a novel dual (alpha/gamma) peroxisome proliferator-activated receptor activator, improves diabetes and other metabolic abnormalities and preserves beta-cell function in db/db mice.
    Diabetes, 2006, Volume: 55, Issue:1

    Topics: Adiponectin; Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Type 2; Diet; Female; Glycin

2006
Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats.
    Neuropharmacology, 2006, Volume: 51, Issue:7-8

    Topics: Adipose Tissue; Animals; Antipsychotic Agents; Appetite; Body Weight; Corticosterone; Diabetes Melli

2006
Insulin resistance and low sympathetic nerve activity in the Tsumura Suzuki obese diabetic mouse: a new model of spontaneous type 2 diabetes mellitus and obesity.
    Metabolism: clinical and experimental, 2006, Volume: 55, Issue:12

    Topics: Adiponectin; Adipose Tissue, Brown; Adrenal Glands; Animals; Corticosterone; Diabetes Mellitus, Type

2006
Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: the effects of stress and non-volitional exercise.
    Metabolism: clinical and experimental, 2007, Volume: 56, Issue:6

    Topics: Animals; Blood Glucose; Body Weight; Corticosterone; Diabetes Mellitus, Type 2; Eating; Glucose Tran

2007
Recurrent intermittent restraint delays fed and fasting hyperglycemia and improves glucose return to baseline levels during glucose tolerance tests in the Zucker diabetic fatty rat--role of food intake and corticosterone.
    Metabolism: clinical and experimental, 2007, Volume: 56, Issue:8

    Topics: Adiponectin; Animals; Blood Glucose; Body Weight; Corticosterone; Diabetes Mellitus, Type 2; Eating;

2007
Adrenocortical insufficiency in Otsuka Long-Evans Tokushima Fatty rats, a type 2 diabetes mellitus model.
    Metabolism: clinical and experimental, 2007, Volume: 56, Issue:10

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; 11-beta-Hydroxysteroid Dehydrogenase Type 2; 3-Oxo-5-al

2007
Gene expression of mineralocorticoid and glucocorticoid receptors in the limbic system is related to type-2 like diabetes in leptin-resistant rats.
    Brain research, 2007, Dec-12, Volume: 1184

    Topics: Analysis of Variance; Animals; Area Under Curve; Blood Glucose; Body Weight; Corticosterone; Cortico

2007
Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic beta-cell replication in mice.
    The Journal of physiology, 2008, Feb-01, Volume: 586, Issue:3

    Topics: Animals; Blood Glucose; Blood Pressure; Cell Proliferation; Circadian Rhythm; Corticosterone; Diabet

2008
[Repeating of emotional stress prevents development of melanocortin obesity and type 2 diabetes in the mice with the Agouti yellow mutation].
    Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova, 2007, Volume: 93, Issue:11

    Topics: Agouti Signaling Protein; Animals; Brain; Carbohydrate Metabolism; Corticosterone; Diabetes Mellitus

2007
RU486 did not exacerbate cytokine release in mice challenged with LPS nor in db/db mice.
    BMC pharmacology, 2008, May-12, Volume: 8

    Topics: Adrenocorticotropic Hormone; Animals; Blood Glucose; Chemokine CCL2; Corticosterone; Diabetes Mellit

2008
Diabetic GK rat plasma but not normal Wistar rat plasma induces insulin-stimulated DNA synthesis in primary cultured smooth muscle cells in GK rat aorta.
    Japanese journal of pharmacology, 1994, Volume: 64, Issue:3

    Topics: Animals; Aorta, Thoracic; Cells, Cultured; Corticosterone; Diabetes Mellitus, Type 2; Disease Models

1994
Regional fat distribution and metabolism in a new mouse model (C57BL/6J) of non-insulin-dependent diabetes mellitus.
    Metabolism: clinical and experimental, 1993, Volume: 42, Issue:11

    Topics: Adipose Tissue; Analysis of Variance; Animals; Blood Glucose; Body Constitution; Body Weight; Choles

1993
Aldosterone binding to mineralocorticoid receptors of mononuclear leukocytes in diabetic subjects.
    Acta endocrinologica, 1993, Volume: 128, Issue:6

    Topics: Adult; Aged; Aldosterone; Binding Sites; Corticosterone; Desoxycorticosterone; Diabetes Mellitus; Di

1993
Metabolic and endocrine effects of interleukin-1 in obese, diabetic Zucker fa/fa rats.
    Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association, 1996, Volume: 104, Issue:4

    Topics: Animals; Blood Glucose; Cholesterol; Corticosterone; Diabetes Mellitus; Diabetes Mellitus, Type 2; D

1996
Hypothalamic-pituitary-adrenal axis in WBN/Kob rats with non-insulin dependent diabetes mellitus.
    Endocrine journal, 1996, Volume: 43, Issue:2

    Topics: Adrenal Glands; Adrenocorticotropic Hormone; Animals; Arginine Vasopressin; Blood Glucose; Body Weig

1996
Orchiectomy and response to testosterone in the development of obesity in young Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats.
    International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, 1998, Volume: 22, Issue:4

    Topics: Animals; Base Sequence; Blood Glucose; Cohort Studies; Corticosterone; Diabetes Mellitus, Type 2; Di

1998
Bromocriptine/SKF38393 ameliorates islet dysfunction in the diabetic (db/db) mouse.
    Cellular and molecular life sciences : CMLS, 1998, Volume: 54, Issue:7

    Topics: Animals; Blood Glucose; Bromocriptine; Corticosterone; Diabetes Mellitus, Type 2; Disease Models, An

1998
Increased adrenocorticotropin responses to acute stress in Otsuka Long-Evans Tokushima Fatty (type 2 diabetic) rats.
    Brain research, 2000, Jan-03, Volume: 852, Issue:1

    Topics: Acute Disease; Adrenocorticotropic Hormone; Animals; Corticosterone; Corticotropin-Releasing Hormone

2000
Environmental stress modifies glycemic control and diabetes onset in type 2 diabetes prone Otsuka Long Evans Tokushima Fatty (OLETF) rats.
    Physiology & behavior, 2000, Volume: 68, Issue:4

    Topics: Animals; Blood Glucose; Catecholamines; Corticosterone; Diabetes Mellitus, Type 2; Eating; Glycated

2000
Possible involvement of corticosterone in bone loss of genetically diabetic db/db mice.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2000, Volume: 32, Issue:4

    Topics: Animals; Body Weight; Bone Density; Bone Diseases, Metabolic; Calcium; Corticosterone; Diabetes Mell

2000
Type 1 11beta -hydroxysteroid dehydrogenase mediates glucocorticoid activation and insulin release in pancreatic islets.
    The Journal of biological chemistry, 2000, Nov-10, Volume: 275, Issue:45

    Topics: 11-beta-Hydroxysteroid Dehydrogenases; Animals; Anti-Ulcer Agents; Carbenoxolone; Corticosterone; Di

2000
Endocrine regulation of G-protein subunit production in an animal model of type 2 diabetes mellitus.
    The Journal of endocrinology, 2001, Volume: 168, Issue:3

    Topics: Adipocytes; Animals; Blood Glucose; Cell Culture Techniques; Corticosterone; Diabetes Mellitus, Expe

2001
Plasma 18-hydroxycorticosterone and aldosterone responses to angiotensin II and corticotropin in diabetic patients with hyporeninemic and normoreninemic hypoaldosteronism.
    Acta endocrinologica, 1989, Volume: 121, Issue:1

    Topics: 18-Hydroxycorticosterone; Adrenocorticotropic Hormone; Aldosterone; Angiotensin II; Corticosterone;

1989
[Studies on hypoaldosteronism associated with diabetes mellitus: response of plasma steroids to angiotensin II or ACTH administration].
    Nihon Naibunpi Gakkai zasshi, 1986, Jul-20, Volume: 62, Issue:7

    Topics: 18-Hydroxycorticosterone; Adrenocorticotropic Hormone; Adult; Aged; Aldosterone; Angiotensin II; Cor

1986
Diet-induced type II diabetes in C57BL/6J mice.
    Diabetes, 1988, Volume: 37, Issue:9

    Topics: Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2;

1988