Page last updated: 2024-11-06

corticosterone and Cardiometabolic Syndrome

corticosterone has been researched along with Cardiometabolic Syndrome in 35 studies

Cardiometabolic Syndrome: A cluster of symptoms that are risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES MELLITUS. The major components not only include metabolic dysfunctions of METABOLIC SYNDROME but also HYPERTENSION, and ABDOMINAL OBESITY.

Research Excerpts

ExcerptRelevanceReference
" The involvement of leptin and corticosterone in the formation of arterial hypertension (AH) and in reduction of the effectiveness of RP in MetS was also studied."8.31Participation of Leptin and Corticosterone in the Decrease in Infarct-Limiting Efficiency of Remote Postconditioning and in the Development of Arterial Hypertension in Metabolic Syndrome in Rats. ( Kurbatov, BK; Logvinov, SV; Maslov, LN; Mukhomedzyanov, AV; Naryzhnaya, NV; Sirotina, MA, 2023)
"Prenatal caffeine exposure (PCE) alters the hypothalamic-pituitary-adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats."7.81Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet. ( Chen, L; Guo, Y; He, Z; Li, J; Luo, H; Ma, L; Magdalou, J; Wang, H; Wu, Y; Zhang, L, 2015)
" We found that high doses of CORT (100 microg/ml) result in rapid and dramatic increases in weight gain, increased adiposity, elevated plasma leptin, insulin and triglyceride levels, hyperphagia, and decreased home-cage locomotion."7.76Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse. ( Bhagat, SM; Bowles, NP; Karatsoreos, IN; McEwen, BS; Pfaff, DW; Weil, ZM, 2010)
"Thus, we examined the response to peripheral exenatide using telemetry in conscious, unrestrained rats under normotensive conditions and in a model of hypertension/metabolic syndrome induced by corticosterone."7.75Exenatide improves hypertension in a rat model of the metabolic syndrome. ( Guss, S; Landry, J; Laugero, KD; Parkes, DG; Stonehouse, AH; Vu, C, 2009)
" We found that chronic administration of 11-DHC to male C57BL/6J mice resulted in increased circulating glucocorticoids, and down-regulation of the hypothalamic-pituitary-adrenal axis."5.3911-Dehydrocorticosterone causes metabolic syndrome, which is prevented when 11β-HSD1 is knocked out in livers of male mice. ( Andersén, H; Bohlooly-Y, M; Cottrell, EC; DeSchoolmeester, J; Harno, E; Keevil, BG; Leighton, B; Turnbull, AV; White, A, 2013)
" The involvement of leptin and corticosterone in the formation of arterial hypertension (AH) and in reduction of the effectiveness of RP in MetS was also studied."4.31Participation of Leptin and Corticosterone in the Decrease in Infarct-Limiting Efficiency of Remote Postconditioning and in the Development of Arterial Hypertension in Metabolic Syndrome in Rats. ( Kurbatov, BK; Logvinov, SV; Maslov, LN; Mukhomedzyanov, AV; Naryzhnaya, NV; Sirotina, MA, 2023)
"These results demonstrates that hypertension and insulin resistance induced by COC is associated with increased cardiac RAS and PAI-1 gene expression, which is likely to be through corticosterone-dependent but not aldosterone-dependent mechanism."3.85Activation of cardiac renin-angiotensin system and plasminogen activator inhibitor-1 gene expressions in oral contraceptive-induced cardiometabolic disorder. ( Kim, IK; Olatunji, LA; Seok, YM; Usman, TO, 2017)
" Using a mouse model of excess corticosterone exposure, we found that the ability of glucocorticoids to increase adiposity, weight gain, hormonal dysregulation, hepatic steatosis, and dyslipidemia was reduced or reversed in mice lacking the cannabinoid CB1 receptor as well as mice treated with the global CB1 receptor antagonist AM251."3.81A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. ( Bowles, NP; Hill, MN; Hillard, CJ; Karatsoreos, IN; Kunos, G; Li, X; Li, Z; Makriyannis, AM; McEwen, BS; Schwartz, GJ; Tamashiro, KL; Vemuri, VK; Wood, JA, 2015)
"Prenatal caffeine exposure (PCE) alters the hypothalamic-pituitary-adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats."3.81Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet. ( Chen, L; Guo, Y; He, Z; Li, J; Luo, H; Ma, L; Magdalou, J; Wang, H; Wu, Y; Zhang, L, 2015)
"Maternal phenotype during pregnancy and the end of lactation evidenced markedly elevated body fat and plasma corticosterone levels in HF dams."3.80Maternal obesity and high-fat diet program offspring metabolic syndrome. ( Beall, M; Desai, M; Han, G; Jellyman, JK; Lane, RH; Ross, MG, 2014)
" Insulin resistance and glucose intolerance were determined along with tissue glycogen content."3.78Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats. ( Acharya, V; Ayyalasomayajula, V; Koppala, SR; Nemani, H; Ponday, LR; Pothana, S; Prasad Sakamuri, SS; Prathipati, VK; Putcha, UK; Sukapaka, M; Veetill, GN, 2012)
" We found that high doses of CORT (100 microg/ml) result in rapid and dramatic increases in weight gain, increased adiposity, elevated plasma leptin, insulin and triglyceride levels, hyperphagia, and decreased home-cage locomotion."3.76Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse. ( Bhagat, SM; Bowles, NP; Karatsoreos, IN; McEwen, BS; Pfaff, DW; Weil, ZM, 2010)
"Thus, we examined the response to peripheral exenatide using telemetry in conscious, unrestrained rats under normotensive conditions and in a model of hypertension/metabolic syndrome induced by corticosterone."3.75Exenatide improves hypertension in a rat model of the metabolic syndrome. ( Guss, S; Landry, J; Laugero, KD; Parkes, DG; Stonehouse, AH; Vu, C, 2009)
"Mycophenolic acid was detected in all cats."2.61 ( Abrams, G; Adolfsson, E; Agarwal, PK; Akkan, AG; Al Alhareth, NS; Alves, VGL; Armentano, R; Bahroos, E; Baig, M; Baldridge, KK; Barman, S; Bartolucci, C; Basit, A; Bertoli, SV; Bian, L; Bigatti, G; Bobenko, AI; Boix, PP; Bokulic, T; Bolink, HJ; Borowiec, J; Bulski, W; Burciaga, J; Butt, NS; Cai, AL; Campos, AM; Cao, G; Cao, Y; Čapo, I; Caruso, ML; Chao, CT; Cheatum, CM; Chelminski, K; Chen, AJW; Chen, C; Chen, CH; Chen, D; Chen, G; Chen, H; Chen, LH; Chen, R; Chen, RX; Chen, X; Cherdtrakulkiat, R; Chirvony, VS; Cho, JG; Chu, K; Ciurlino, D; Coletta, S; Contaldo, G; Crispi, F; Cui, JF; D'Esposito, M; de Biase, S; Demir, B; Deng, W; Deng, Z; Di Pinto, F; Domenech-Ximenos, B; Dong, G; Drácz, L; Du, XJ; Duan, LJ; Duan, Y; Ekendahl, D; Fan, W; Fang, L; Feng, C; Followill, DS; Foreman, SC; Fortunato, G; Frew, R; Fu, M; Gaál, V; Ganzevoort, W; Gao, DM; Gao, X; Gao, ZW; Garcia-Alvarez, A; Garza, MS; Gauthier, L; Gazzaz, ZJ; Ge, RS; Geng, Y; Genovesi, S; Geoffroy, V; Georg, D; Gigli, GL; Gong, J; Gong, Q; Groeneveld, J; Guerra, V; Guo, Q; Guo, X; Güttinger, R; Guyo, U; Haldar, J; Han, DS; Han, S; Hao, W; Hayman, A; He, D; Heidari, A; Heller, S; Ho, CT; Ho, SL; Hong, SN; Hou, YJ; Hu, D; Hu, X; Hu, ZY; Huang, JW; Huang, KC; Huang, Q; Huang, T; Hwang, JK; Izewska, J; Jablonski, CL; Jameel, T; Jeong, HK; Ji, J; Jia, Z; Jiang, W; Jiang, Y; Kalumpha, M; Kang, JH; Kazantsev, P; Kazemier, BM; Kebede, B; Khan, SA; Kiss, J; Kohen, A; Kolbenheyer, E; Konai, MM; Koniarova, I; Kornblith, E; Krawetz, RJ; Kreouzis, T; Kry, SF; Laepple, T; Lalošević, D; Lan, Y; Lawung, R; Lechner, W; Lee, KH; Lee, YH; Leonard, C; Li, C; Li, CF; Li, CM; Li, F; Li, J; Li, L; Li, S; Li, X; Li, Y; Li, YB; Li, Z; Liang, C; Lin, J; Lin, XH; Ling, M; Link, TM; Liu, HH; Liu, J; Liu, M; Liu, W; Liu, YP; Lou, H; Lu, G; Lu, M; Lun, SM; Ma, Z; Mackensen, A; Majumdar, S; Martineau, C; Martínez-Pastor, JP; McQuaid, JR; Mehrabian, H; Meng, Y; Miao, T; Miljković, D; Mo, J; Mohamed, HSH; Mohtadi, M; Mol, BWJ; Moosavi, L; Mosdósi, B; Nabu, S; Nava, E; Ni, L; Novakovic-Agopian, T; Nyamunda, BC; Nyul, Z; Önal, B; Özen, D; Özyazgan, S; Pajkrt, E; Palazon, F; Park, HW; Patai, Á; Patai, ÁV; Patzke, GR; Payette, G; Pedoia, V; Peelen, MJCS; Pellitteri, G; Peng, J; Perea, RJ; Pérez-Del-Rey, D; Popović, DJ; Popović, JK; Popović, KJ; Posecion, L; Povall, J; Prachayasittikul, S; Prachayasittikul, V; Prat-González, S; Qi, B; Qu, B; Rakshit, S; Ravelli, ACJ; Ren, ZG; Rivera, SM; Salo, P; Samaddar, S; Samper, JLA; Samy El Gendy, NM; Schmitt, N; Sekerbayev, KS; Sepúlveda-Martínez, Á; Sessolo, M; Severi, S; Sha, Y; Shen, FF; Shen, X; Shen, Y; Singh, P; Sinthupoom, N; Siri, S; Sitges, M; Slovak, JE; Solymosi, N; Song, H; Song, J; Song, M; Spingler, B; Stewart, I; Su, BL; Su, JF; Suming, L; Sun, JX; Tantimavanich, S; Tashkandi, JM; Taurbayev, TI; Tedgren, AC; Tenhunen, M; Thwaites, DI; Tibrewala, R; Tomsejm, M; Triana, CA; Vakira, FM; Valdez, M; Valente, M; Valentini, AM; Van de Winckel, A; van der Lee, R; Varga, F; Varga, M; Villarino, NF; Villemur, R; Vinatha, SP; Vincenti, A; Voskamp, BJ; Wang, B; Wang, C; Wang, H; Wang, HT; Wang, J; Wang, M; Wang, N; Wang, NC; Wang, Q; Wang, S; Wang, X; Wang, Y; Wang, Z; Wen, N; Wesolowska, P; Willis, M; Wu, C; Wu, D; Wu, L; Wu, X; Wu, Z; Xia, JM; Xia, X; Xia, Y; Xiao, J; Xiao, Y; Xie, CL; Xie, LM; Xie, S; Xing, Z; Xu, C; Xu, J; Yan, D; Yan, K; Yang, S; Yang, X; Yang, XW; Ye, M; Yin, Z; Yoon, N; Yoon, Y; Yu, H; Yu, K; Yu, ZY; Zhang, B; Zhang, GY; Zhang, H; Zhang, J; Zhang, M; Zhang, Q; Zhang, S; Zhang, W; Zhang, X; Zhang, Y; Zhang, YW; Zhang, Z; Zhao, D; Zhao, F; Zhao, P; Zhao, W; Zhao, Z; Zheng, C; Zhi, D; Zhou, C; Zhou, FY; Zhu, D; Zhu, J; Zhu, Q; Zinyama, NP; Zou, M; Zou, Z, 2019)
" Rearing in social isolation increased stress reactivity in comparison to both controls and in combination with periodic maternal separation, without affecting the coping strategy associated with the forced swimming test."1.43Early Life Stress Increases Metabolic Risk, HPA Axis Reactivity, and Depressive-Like Behavior When Combined with Postweaning Social Isolation in Rats. ( Gomez, C; Junco, M; Lajud, N; Vargas, J, 2016)
" We found that chronic administration of 11-DHC to male C57BL/6J mice resulted in increased circulating glucocorticoids, and down-regulation of the hypothalamic-pituitary-adrenal axis."1.3911-Dehydrocorticosterone causes metabolic syndrome, which is prevented when 11β-HSD1 is knocked out in livers of male mice. ( Andersén, H; Bohlooly-Y, M; Cottrell, EC; DeSchoolmeester, J; Harno, E; Keevil, BG; Leighton, B; Turnbull, AV; White, A, 2013)
"Metabolic syndrome is a condition that typically includes central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension."1.38Anatomic, hematologic, and biochemical features of C57BL/6NCrl mice maintained on chronic oral corticosterone. ( Cassano, AE; Karatsoreos, IN; Penraat, KA; Rasmussen, S; White, JR; Wilson, CD, 2012)

Research

Studies (35)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (14.29)29.6817
2010's27 (77.14)24.3611
2020's3 (8.57)2.80

Authors

AuthorsStudies
Logvinov, SV1
Mukhomedzyanov, AV1
Kurbatov, BK1
Sirotina, MA1
Naryzhnaya, NV1
Maslov, LN1
Hashim, KN1
Chin, KY1
Ahmad, F1
Xu, J2
Shao, X1
Zeng, H1
Wang, C2
Li, J8
Peng, X1
Zhuo, Y1
Hua, L1
Meng, F1
Han, X1
Bobenko, AI1
Heller, S1
Schmitt, N1
Cherdtrakulkiat, R1
Lawung, R1
Nabu, S1
Tantimavanich, S1
Sinthupoom, N1
Prachayasittikul, S1
Prachayasittikul, V1
Zhang, B1
Wu, C1
Zhang, Z2
Yan, K1
Li, C2
Li, Y4
Li, L3
Zheng, C1
Xiao, Y1
He, D1
Zhao, F1
Su, JF1
Lun, SM1
Hou, YJ1
Duan, LJ1
Wang, NC1
Shen, FF1
Zhang, YW1
Gao, ZW1
Du, XJ1
Zhou, FY1
Yin, Z1
Zhu, J2
Yan, D1
Lou, H1
Yu, H1
Feng, C1
Wang, Z1
Wang, Y4
Hu, X1
Li, Z3
Shen, Y1
Hu, D1
Chen, H1
Wu, X1
Duan, Y1
Zhi, D1
Zou, M2
Zhao, Z1
Zhang, X2
Yang, X2
Zhang, J2
Wang, H5
Popović, KJ1
Popović, DJ1
Miljković, D1
Lalošević, D1
Čapo, I1
Popović, JK1
Liu, M1
Song, H2
Xing, Z1
Lu, G1
Chen, D1
Valentini, AM1
Di Pinto, F1
Coletta, S1
Guerra, V1
Armentano, R1
Caruso, ML1
Gong, J1
Wang, N1
Bian, L1
Wang, M1
Ye, M1
Wen, N1
Fu, M1
Fan, W1
Meng, Y1
Dong, G1
Lin, XH1
Liu, HH1
Gao, DM1
Cui, JF1
Ren, ZG1
Chen, RX1
Önal, B1
Özen, D1
Demir, B1
Akkan, AG1
Özyazgan, S1
Payette, G1
Geoffroy, V1
Martineau, C1
Villemur, R1
Jameel, T1
Baig, M1
Gazzaz, ZJ1
Tashkandi, JM1
Al Alhareth, NS1
Khan, SA1
Butt, NS1
Wang, J2
Geng, Y1
Zhang, Y3
Wang, X2
Liu, J2
Basit, A1
Miao, T1
Liu, W1
Jiang, W1
Yu, ZY1
Wu, L2
Qu, B1
Sun, JX1
Cai, AL1
Xie, LM1
Groeneveld, J1
Ho, SL1
Mackensen, A1
Mohtadi, M1
Laepple, T1
Genovesi, S1
Nava, E1
Bartolucci, C1
Severi, S1
Vincenti, A1
Contaldo, G1
Bigatti, G1
Ciurlino, D1
Bertoli, SV1
Slovak, JE1
Hwang, JK1
Rivera, SM1
Villarino, NF1
Li, S1
Cao, G1
Ling, M1
Ji, J1
Zhao, D1
Sha, Y1
Gao, X1
Liang, C2
Guo, Q1
Zhou, C1
Ma, Z1
Zhao, W1
Xia, X1
Jiang, Y1
Peng, J1
Jia, Z1
Li, F1
Chen, X2
Mo, J1
Zhang, S2
Li, X2
Huang, T1
Zhu, Q1
Wang, S1
Ge, RS1
Fortunato, G1
Lin, J2
Agarwal, PK1
Kohen, A1
Singh, P1
Cheatum, CM1
Zhu, D1
Hayman, A1
Kebede, B1
Stewart, I1
Chen, G1
Frew, R1
Guo, X1
Gong, Q1
Borowiec, J1
Han, S1
Zhang, M1
Willis, M1
Kreouzis, T1
Yu, K1
Chirvony, VS1
Sekerbayev, KS1
Pérez-Del-Rey, D1
Martínez-Pastor, JP1
Palazon, F1
Boix, PP1
Taurbayev, TI1
Sessolo, M1
Bolink, HJ1
Lu, M1
Lan, Y1
Xiao, J1
Song, M1
Chen, C1
Huang, Q1
Cao, Y1
Ho, CT1
Qi, B1
Wang, Q1
Zhang, W1
Fang, L1
Xie, CL1
Chen, R1
Yang, S1
Xia, JM1
Zhang, GY1
Chen, CH1
Yang, XW1
Domenech-Ximenos, B1
Garza, MS1
Prat-González, S1
Sepúlveda-Martínez, Á1
Crispi, F1
Perea, RJ1
Garcia-Alvarez, A1
Sitges, M1
Kalumpha, M1
Guyo, U1
Zinyama, NP1
Vakira, FM1
Nyamunda, BC1
Varga, M1
Drácz, L1
Kolbenheyer, E1
Varga, F1
Patai, ÁV1
Solymosi, N1
Patai, Á1
Kiss, J1
Gaál, V1
Nyul, Z1
Mosdósi, B1
Valdez, M1
Moosavi, L1
Heidari, A1
Novakovic-Agopian, T1
Kornblith, E1
Abrams, G1
McQuaid, JR1
Posecion, L1
Burciaga, J1
D'Esposito, M1
Chen, AJW1
Samy El Gendy, NM1
Wesolowska, P1
Georg, D1
Lechner, W1
Kazantsev, P1
Bokulic, T1
Tedgren, AC1
Adolfsson, E1
Campos, AM1
Alves, VGL1
Suming, L1
Hao, W1
Ekendahl, D1
Koniarova, I1
Bulski, W1
Chelminski, K1
Samper, JLA1
Vinatha, SP1
Rakshit, S1
Siri, S1
Tomsejm, M1
Tenhunen, M1
Povall, J1
Kry, SF1
Followill, DS1
Thwaites, DI1
Izewska, J1
Kang, JH1
Yoon, Y1
Song, J1
Van de Winckel, A1
Gauthier, L1
Chao, CT1
Lee, YH1
Li, CM1
Han, DS1
Huang, JW1
Huang, KC1
Ni, L1
Güttinger, R1
Triana, CA1
Spingler, B1
Baldridge, KK1
Patzke, GR1
Shen, X1
Wang, B1
Xie, S1
Deng, W1
Wu, D1
Zhang, Q1
Voskamp, BJ1
Peelen, MJCS1
Ravelli, ACJ1
van der Lee, R1
Mol, BWJ1
Pajkrt, E1
Ganzevoort, W1
Kazemier, BM1
Tibrewala, R1
Bahroos, E1
Mehrabian, H1
Foreman, SC1
Link, TM1
Pedoia, V1
Majumdar, S1
Jablonski, CL1
Leonard, C1
Salo, P1
Krawetz, RJ1
Yoon, N1
Hong, SN1
Cho, JG1
Jeong, HK1
Lee, KH1
Park, HW1
Barman, S1
Konai, MM1
Samaddar, S1
Haldar, J1
Mohamed, HSH1
Li, CF1
Hu, ZY1
Deng, Z1
Chen, LH1
Su, BL1
Chu, K1
Liu, YP1
Li, YB1
Zhang, H1
Xu, C1
Zou, Z1
Wu, Z1
Xia, Y1
Zhao, P1
Wang, HT1
de Biase, S1
Pellitteri, G1
Gigli, GL1
Valente, M1
Patterson, E1
Ryan, PM1
Wiley, N1
Carafa, I1
Sherwin, E1
Moloney, G1
Franciosi, E1
Mandal, R1
Wishart, DS1
Tuohy, K1
Ross, RP1
Cryan, JF1
Dinan, TG1
Stanton, C1
Prince, PD1
Santander, YA1
Gerez, EM1
Höcht, C1
Polizio, AH1
Mayer, MA1
Taira, CA1
Fraga, CG1
Galleano, M1
Carranza, A1
Pei, LG1
Yuan, C1
Guo, YT1
Kou, H2
Xia, LP2
Zhang, L4
Yan, YE1
Xu, D1
García-Eguren, G1
Giró, O1
Romero, MDM1
Grasa, M1
Hanzu, FA1
Ikegawa, S1
Harno, E1
Cottrell, EC1
Keevil, BG1
DeSchoolmeester, J1
Bohlooly-Y, M1
Andersén, H1
Turnbull, AV1
Leighton, B1
White, A1
Shen, L1
Zhang, BJ1
Wu, Y2
Li, XJ1
Xiong, J1
Yu, Y1
Desai, M1
Jellyman, JK1
Han, G1
Beall, M1
Lane, RH1
Ross, MG1
Bowles, NP2
Karatsoreos, IN3
Vemuri, VK1
Wood, JA1
Tamashiro, KL1
Schwartz, GJ1
Makriyannis, AM1
Kunos, G1
Hillard, CJ1
McEwen, BS2
Hill, MN1
Luo, H2
He, Z2
Guo, Y1
Ma, L2
Magdalou, J1
Chen, L2
Olatunji, LA1
Usman, TO1
Seok, YM1
Kim, IK1
Nguyen Dinh Cat, A1
Antunes, TT1
Callera, GE1
Sanchez, A1
Tsiropoulou, S1
Dulak-Lis, MG1
Anagnostopoulou, A1
He, Y1
Montezano, AC1
Jaisser, F1
Touyz, RM1
Vargas, J1
Junco, M1
Gomez, C1
Lajud, N1
Laugero, KD1
Stonehouse, AH1
Guss, S1
Landry, J1
Vu, C1
Parkes, DG1
Bhagat, SM1
Weil, ZM1
Pfaff, DW1
Loizzo, S1
Vella, S1
Loizzo, A1
Fortuna, A1
Di Biase, A1
Salvati, S1
Frajese, GV1
Agrapart, V1
Ramirez Morales, R1
Spampinato, S1
Campana, G1
Capasso, A1
Galietta, G1
Guarino, I1
Carta, S1
Carru, C1
Zinellu, A1
Ghirlanda, G1
Seghieri, G1
Renzi, P1
Franconi, F1
Martín-Cordero, L1
García, JJ1
Hinchado, MD1
Ortega, E1
Klusoňová, P1
Pátková, L1
Ergang, P1
Mikšík, I1
Zicha, J1
Kuneš, J1
Pácha, J1
Pereira, CD1
Azevedo, I1
Monteiro, R1
Martins, MJ1
Chang, LL1
Wun, WS1
Wang, PS1
Berryhill, GE1
Gloviczki, JM1
Trott, JF1
Aimo, L1
Kraft, J1
Cardiff, RD1
Paul, CT1
Petrie, WK1
Lock, AL1
Hovey, RC1
Müller-Fielitz, H1
Raasch, W1
Cassano, AE1
White, JR1
Penraat, KA1
Wilson, CD1
Rasmussen, S1
Evans, JF1
Islam, S1
Urade, Y1
Eguchi, N1
Ragolia, L1
Prasad Sakamuri, SS1
Sukapaka, M1
Prathipati, VK1
Nemani, H1
Putcha, UK1
Pothana, S1
Koppala, SR1
Ponday, LR1
Acharya, V1
Veetill, GN1
Ayyalasomayajula, V1
Veličković, N1
Djordjevic, A1
Vasiljević, A1
Bursać, B1
Milutinović, DV1
Matić, G1
Morton, NM3
Densmore, V1
Wamil, M1
Ramage, L1
Nichol, K1
Bünger, L1
Seckl, JR3
Kenyon, CJ1
Nuotio-Antar, AM1
Hachey, DL1
Hasty, AH1
Masuzaki, H1
Paterson, J1
Shinyama, H1
Mullins, JJ1
Flier, JS1

Reviews

4 reviews available for corticosterone and Cardiometabolic Syndrome

ArticleYear
    Proceedings. Mathematical, physical, and engineering sciences, 2019, Volume: 475, Issue:2227

    Topics: Acetylcholine; Acinetobacter baumannii; Actinobacteria; Action Potentials; Adalimumab; Adaptation, P

2019
[Detailed characterization of bile acid and glucocorticoid world by mass spectrometry].
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 2013, Volume: 133, Issue:6

    Topics: Animals; Bile Acids and Salts; Bile Duct Diseases; Biomarkers; Corticosterone; Drug Discovery; Endoc

2013
11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus.
    Diabetes, obesity & metabolism, 2012, Volume: 14, Issue:10

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adipose Tissue; Animals; Anti-Inflammatory Agents; Athe

2012
11beta-hydroxysteroid dehydrogenase type 1 and obesity.
    Frontiers of hormone research, 2008, Volume: 36

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; 11-beta-Hydroxysteroid Dehydrogenase Type 2; Adipose Ti

2008

Other Studies

31 other studies available for corticosterone and Cardiometabolic Syndrome

ArticleYear
Participation of Leptin and Corticosterone in the Decrease in Infarct-Limiting Efficiency of Remote Postconditioning and in the Development of Arterial Hypertension in Metabolic Syndrome in Rats.
    Bulletin of experimental biology and medicine, 2023, Volume: 174, Issue:3

    Topics: Animals; Corticosterone; Hypertension; Infarction; Ischemia; Ischemic Postconditioning; Leptin; Meta

2023
The Mechanism of Kelulut Honey in Reversing Metabolic Changes in Rats Fed with High-Carbohydrate High-Fat Diet.
    Molecules (Basel, Switzerland), 2023, Mar-20, Volume: 28, Issue:6

    Topics: Adiponectin; Adipose Tissue; Animals; Bees; Corticosterone; Diabetes Mellitus, Type 2; Diet, High-Fa

2023
Hepatic-Specific FGF21 Knockout Abrogates Ovariectomy-Induced Obesity by Reversing Corticosterone Production.
    International journal of molecular sciences, 2023, Oct-05, Volume: 24, Issue:19

    Topics: Animals; Corticosterone; Diet, High-Fat; Estrogens; Female; Fibroblast Growth Factors; Glucocorticoi

2023
Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome.
    Scientific reports, 2019, 11-08, Volume: 9, Issue:1

    Topics: Adipose Tissue; Animals; Behavior, Animal; Body Weight; Cholesterol; Corticosterone; Depression; Dis

2019
Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue.
    The Journal of nutritional biochemistry, 2017, Volume: 46

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adipose Tissue, White; Animals; Blood Pressure; Body We

2017
Prenatal caffeine exposure induced high susceptibility to metabolic syndrome in adult female offspring rats and its underlying mechanisms.
    Reproductive toxicology (Elmsford, N.Y.), 2017, Volume: 71

    Topics: Adrenal Glands; Adrenocorticotropic Hormone; Animals; Blood Glucose; Caffeine; Central Nervous Syste

2017
Chronic hypercortisolism causes more persistent visceral adiposity than HFD-induced obesity.
    The Journal of endocrinology, 2019, Volume: 242, Issue:2

    Topics: Adipose Tissue; Adiposity; Animals; Anti-Inflammatory Agents; Body Weight; Corticosterone; Cushing S

2019
11-Dehydrocorticosterone causes metabolic syndrome, which is prevented when 11β-HSD1 is knocked out in livers of male mice.
    Endocrinology, 2013, Volume: 154, Issue:10

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adiposity; Animals; Biomarkers; Corticosterone; Down-Re

2013
Prenatal ethanol exposure enhances the susceptibility to metabolic syndrome in offspring rats by HPA axis-associated neuroendocrine metabolic programming.
    Toxicology letters, 2014, Apr-07, Volume: 226, Issue:1

    Topics: Adrenocorticotropic Hormone; Age Factors; Animals; Biomarkers; Blood Glucose; Corticosterone; Diet,

2014
Maternal obesity and high-fat diet program offspring metabolic syndrome.
    American journal of obstetrics and gynecology, 2014, Volume: 211, Issue:3

    Topics: Animals; Body Composition; Corticosterone; Diet, High-Fat; Eating; Female; Lactation; Lipids; Male;

2014
A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome.
    Proceedings of the National Academy of Sciences of the United States of America, 2015, Jan-06, Volume: 112, Issue:1

    Topics: Animals; Corticosterone; Dyslipidemias; Endocannabinoids; Glucocorticoids; Liver; Metabolic Syndrome

2015
Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet.
    Toxicology and applied pharmacology, 2015, May-01, Volume: 284, Issue:3

    Topics: Adrenocorticotropic Hormone; Age Factors; Analysis of Variance; Animal Nutritional Physiological Phe

2015
Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet.
    Scientific reports, 2015, Dec-03, Volume: 5

    Topics: Adrenocorticotropic Hormone; Animals; Corticosterone; Diet, High-Fat; Disease Susceptibility; Ethano

2015
Activation of cardiac renin-angiotensin system and plasminogen activator inhibitor-1 gene expressions in oral contraceptive-induced cardiometabolic disorder.
    Archives of physiology and biochemistry, 2017, Volume: 123, Issue:1

    Topics: Aldosterone; Animals; Ataxia Telangiectasia Mutated Proteins; Cardiovascular Diseases; Contraceptive

2017
Adipocyte-Specific Mineralocorticoid Receptor Overexpression in Mice Is Associated With Metabolic Syndrome and Vascular Dysfunction: Role of Redox-Sensitive PKG-1 and Rho Kinase.
    Diabetes, 2016, Volume: 65, Issue:8

    Topics: Adipocytes; Aldosterone; Angiotensin II; Animals; Cells, Cultured; Corticosterone; Culture Media, Co

2016
Early Life Stress Increases Metabolic Risk, HPA Axis Reactivity, and Depressive-Like Behavior When Combined with Postweaning Social Isolation in Rats.
    PloS one, 2016, Volume: 11, Issue:9

    Topics: Adaptation, Psychological; Animals; Behavior, Animal; Corticosterone; Depression; Female; Glucose; H

2016
Exenatide improves hypertension in a rat model of the metabolic syndrome.
    Metabolic syndrome and related disorders, 2009, Volume: 7, Issue:4

    Topics: Animals; Blood Pressure; Body Weight; Corticosterone; Disease Models, Animal; Exenatide; Glucagon-Li

2009
Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse.
    Endocrinology, 2010, Volume: 151, Issue:5

    Topics: Adipose Tissue, White; Adiposity; Adrenal Glands; Animals; Atrophy; Chemical Phenomena; Corticostero

2010
Sexual dimorphic evolution of metabolic programming in non-genetic non-alimentary mild metabolic syndrome model in mice depends on feed-back mechanisms integrity for pro-opiomelanocortin-derived endogenous substances.
    Peptides, 2010, Volume: 31, Issue:8

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; 11-beta-Hydroxysteroid Dehydrogenase Type 2; Adrenocort

2010
The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: effect of exercise.
    Cardiovascular diabetology, 2011, May-20, Volume: 10

    Topics: Adaptation, Physiological; Analysis of Variance; Animals; Blood Glucose; C-Reactive Protein; Chromat

2011
Local metabolism of glucocorticoids in Prague hereditary hypertriglyceridemic rats--effect of hypertriglyceridemia and gender.
    Steroids, 2011, Volume: 76, Issue:12

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Carbohydrate Dehydrogenases; Corticosterone; D

2011
In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. First generation rats (F(1)).
    Toxicology, 2012, Nov-15, Volume: 301, Issue:1-3

    Topics: Adipose Tissue; Adrenocortical Hyperfunction; Adrenocorticotropic Hormone; Aldosterone; Animals; Bod

2012
Diet-induced metabolic change induces estrogen-independent allometric mammary growth.
    Proceedings of the National Academy of Sciences of the United States of America, 2012, Oct-02, Volume: 109, Issue:40

    Topics: Animal Feed; Animals; Blotting, Western; Corticosterone; DNA Primers; Fatty Acids; Female; Histologi

2012
Angiotensin II impairs glucose utilization in obese Zucker rats by increasing HPA activity via an adrenal-dependent mechanism.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2013, Volume: 45, Issue:2

    Topics: Adrenalectomy; Adrenocorticotropic Hormone; Angiotensin II; Animals; Blood Glucose; Corticosterone;

2013
Anatomic, hematologic, and biochemical features of C57BL/6NCrl mice maintained on chronic oral corticosterone.
    Comparative medicine, 2012, Volume: 62, Issue:5

    Topics: Adrenal Glands; Analysis of Variance; Animals; Case-Control Studies; Corticosterone; Dose-Response R

2012
The lipocalin-type prostaglandin D2 synthase knockout mouse model of insulin resistance and obesity demonstrates early hypothalamic-pituitary-adrenal axis hyperactivity.
    The Journal of endocrinology, 2013, Volume: 216, Issue:2

    Topics: Adrenocorticotropic Hormone; Animals; Corticosterone; Genotype; Hypercholesterolemia; Hyperglycemia;

2013
Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats.
    PloS one, 2012, Volume: 7, Issue:12

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adipocytes; Adipose Tissue; Adrenal Glands; Animals; Bo

2012
Tissue-specific regulation of inflammation by macrophage migration inhibitory factor and glucocorticoids in fructose-fed Wistar rats.
    The British journal of nutrition, 2013, Aug-28, Volume: 110, Issue:3

    Topics: Adipose Tissue; Animals; Corticosterone; Diet; Dietary Sucrose; Fructose; Inflammation; Leukocyte L1

2013
A polygenic model of the metabolic syndrome with reduced circulating and intra-adipose glucocorticoid action.
    Diabetes, 2005, Volume: 54, Issue:12

    Topics: Adipose Tissue; Animals; Blood Glucose; Corticosterone; Crosses, Genetic; Cushing Syndrome; Epididym

2005
Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice.
    American journal of physiology. Endocrinology and metabolism, 2007, Volume: 293, Issue:6

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Adipose Tissue; Agouti Signaling Protein; Animals; Athe

2007
A transgenic model of visceral obesity and the metabolic syndrome.
    Science (New York, N.Y.), 2001, Dec-07, Volume: 294, Issue:5549

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Abdomen; Adipocytes; Adipose Tissue; Animals; Body Comp

2001