Page last updated: 2024-11-06

corticosterone and Autoimmune Diabetes

corticosterone has been researched along with Autoimmune Diabetes in 36 studies

Research Excerpts

ExcerptRelevanceReference
"The T1DM mice had ketoacidosis even without water deprivation."5.72SGLT2 Inhibition by Dapagliflozin Attenuates Diabetic Ketoacidosis in Mice with Type-1 Diabetes. ( Bajaj, M; Birnbaum, Y; Chen, H; Yang, HC; Ye, R; Ye, Y, 2022)
"Leptin can reverse hyperglycemia in rodent models of type 1 diabetes."3.83Insulin Knockout Mice Have Extended Survival but Volatile Blood Glucose Levels on Leptin Therapy. ( Covey, SD; Denroche, HC; Kieffer, TJ; Mojibian, M; Neumann, UH, 2016)
"Although diabetes markedly altered body weight gain and serum protein glycosylation (assessed by fructosamine), there was no significant change in hepatic 11β-HSD1 reductase activity, with or without insulin treatment."3.76Effect of diabetes on enzymes involved in rat hepatic corticosterone production. ( Chen, R; Hyatt, T; McCormick, K; Mick, G; Wang, X, 2010)
"The T1DM mice had ketoacidosis even without water deprivation."1.72SGLT2 Inhibition by Dapagliflozin Attenuates Diabetic Ketoacidosis in Mice with Type-1 Diabetes. ( Bajaj, M; Birnbaum, Y; Chen, H; Yang, HC; Ye, R; Ye, Y, 2022)
"However, earlier animal models of type 1 diabetes are severely catabolic with very low endogenous leptin levels, unlike most patients with diabetes."1.56UCP1-independent glucose-lowering effect of leptin in type 1 diabetes: only in conditions of hypoleptinemia. ( Andersen, B; Bokhari, MH; Busby, O; Cannon, B; Conde-Frieboes, KW; Fels, JJ; Nedergaard, J; Paulsson, JF; Rakipovski, G; Raun, K; Zouhar, P, 2020)
"To induce type 1 diabetes, C57BL/6J mice were injected with streptozotocin and blood and hair samples were collected 28days following induction."1.46Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. ( Browne, CA; Erickson, RL; Lucki, I, 2017)
"Cadmium pretreatment showed disturbed glucose homeostasis with attendant changes in carbohydrate metabolism, coupled with decrease in food and water intake."1.38Prior cadmium exposure improves glucoregulation in diabetic rats but exacerbates effects on metabolic dysregulation, oxidative stress, and hepatic and renal toxicity. ( Baxi, D; Diwedi, R; Ramachandran, AV; Singh, PK, 2012)
"Recently, we identified in normally type 1 diabetes-prone NOD/LtJ mice a spontaneous new leptin receptor (LEPR) mutation (designated Lepr(db-5J)) producing juvenile obesity, hyperglycemia, hyperinsulinemia, and hyperleptinemia."1.33Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: II. Immunologic analysis. ( Atkinson, MA; Chen, J; Chen, YG; Clare-Salzler, M; Lee, CH; Leiter, EH; Reifsnyder, PC; Rodriguez, M; Serreze, DV; Wasserfall, C, 2006)
"For individuals with type 1 diabetes, this markedly increases (by 25-fold) the risk of severe hypoglycemia and is a major limitation to optimal insulin therapy."1.33Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation. ( Cheng, H; Fan, X; McCrimmon, RJ; McNay, EC; Routh, VH; Sherwin, RS; Song, Z; Weikart-Yeckel, C, 2006)
"Corticosterone secretion was stimulated by mrIL-1 alpha in both sexes of NOD and C57BL/6 mice, and this effect was faster and greater in NOD females than in C57BL/6 females."1.29Interleukin-1 effect on glycemia in the non-obese diabetic mouse at the pre-diabetic stage. ( Amrani, A; Dardenne, M; Durant, S; Haour, F; Homo-Delarche, F; Jafarian-Tehrani, M; Mormède, P; Pleau, JM, 1996)

Research

Studies (36)

TimeframeStudies, this research(%)All Research%
pre-19902 (5.56)18.7374
1990's9 (25.00)18.2507
2000's11 (30.56)29.6817
2010's11 (30.56)24.3611
2020's3 (8.33)2.80

Authors

AuthorsStudies
Clark, KA1
Shin, AC1
Sirivelu, MP1
MohanKumar, RC1
Maddineni, SR1
Ramachandran, R1
MohanKumar, PS1
MohanKumar, SMJ1
Zouhar, P1
Rakipovski, G1
Bokhari, MH1
Busby, O1
Paulsson, JF1
Conde-Frieboes, KW1
Fels, JJ1
Raun, K1
Andersen, B1
Cannon, B1
Nedergaard, J1
Chen, H1
Birnbaum, Y1
Ye, R1
Yang, HC1
Bajaj, M1
Ye, Y1
Pechlivanova, D1
Petrov, K1
Grozdanov, P1
Nenchovska, Z1
Tchekalarova, J1
Stoynev, A1
Hammadi, S1
Chan, O1
Abdellali, M1
Medjerab, M1
Agoun, H1
Bellahreche, Z1
Khalkhal, A1
Dahmani, Y1
Karimian, N1
Qin, T1
Liang, T1
Osundiji, M1
Huang, Y1
Teich, T1
Riddell, MC1
Cattral, MS1
Coy, DH1
Vranic, M1
Gaisano, HY1
Perry, RJ1
Lee, S1
Ma, L1
Zhang, D1
Schlessinger, J1
Shulman, GI1
Neumann, UH1
Denroche, HC1
Mojibian, M1
Covey, SD1
Kieffer, TJ1
Erickson, RL1
Browne, CA1
Lucki, I1
McGhee, NK1
Jefferson, LS1
Kimball, SR1
Revsin, Y1
de Kloet, ER1
Gil-Lozano, M1
Pérez-Tilve, D1
Alvarez-Crespo, M1
Martís, A1
Fernandez, AM1
Catalina, PA1
Gonzalez-Matias, LC1
Mallo, F1
Coulaud, J6
Durant, S6
Homo-Delarche, F8
Hyatt, T1
Chen, R1
Wang, X1
Mick, G1
McCormick, K1
Zuo, ZF1
Wang, W2
Niu, L1
Kou, ZZ1
Zhu, C1
Zhao, XH1
Luo, DS1
Zhang, T1
Zhang, FX1
Liu, XZ1
Wu, SX1
Li, YQ1
Singh, PK1
Baxi, D1
Diwedi, R1
Ramachandran, AV1
Wang, JL1
Qian, X1
Chinookoswong, N1
Lu, J1
Chow, G1
Theill, LE1
Shi, ZQ1
Beales, PE1
Castri, F1
Valiant, A1
Rosignoli, G1
Buckley, L1
Pozzilli, P1
Dallman, MF1
Akana, SF1
Strack, AM1
Scribner, KS1
Pecoraro, N1
La Fleur, SE1
Houshyar, H1
Gomez, F1
Kagohashi, Y1
Udagawa, J1
Moriyama, K1
Otani, H1
Lee, CH1
Chen, YG1
Chen, J1
Reifsnyder, PC1
Serreze, DV1
Clare-Salzler, M1
Rodriguez, M1
Wasserfall, C1
Atkinson, MA1
Leiter, EH1
McCrimmon, RJ1
Song, Z1
Cheng, H1
McNay, EC1
Weikart-Yeckel, C1
Fan, X1
Routh, VH1
Sherwin, RS1
Harizi, H1
Amrani, A3
Mormède, P2
Beauquis, J1
Saravia, F1
Roig, P1
Dardenne, M5
De Nicola, A1
Rodgers, BD1
Lau, AO1
Nicoll, CS1
el Hasnaoui, A1
Shimada, T1
Yasuda, K1
Mori, A1
Ni, H1
Mercado-Asis, LB1
Murase, H1
Miura, K1
Jafarian-Tehrani, M1
Pleau, JM2
Haour, F1
Yamatani, K1
Saito, K1
Ohnuma, H1
Ikezawa, Y1
Seino, T1
Manaka, Y1
Daimon, M1
Takahashi, K1
Sasaki, H1
Verhaeghe, J1
Van Herck, E1
van Bree, R1
Moermans, K1
Bouillon, R1
Christeff, N2
Nunez, EA2
Pelegri, C1
Rosmalen, JG1
Throsby, M1
Alvès, V1
Esling, A1
Drexhage, HA1
Fitzpatrick, F1
Brichard, SM1
Ongemba, LN1
Kolanowski, J1
Henquin, JC1
Abdel-Salam, E1
Abdel-Aziz, T1
Hafiez, AA1
el-Sharkawy, S1
Boutros, NZ1
Asfeldt, VH1

Reviews

1 review available for corticosterone and Autoimmune Diabetes

ArticleYear
Chronic stress-induced effects of corticosterone on brain: direct and indirect.
    Annals of the New York Academy of Sciences, 2004, Volume: 1018

    Topics: Animals; Brain; Chronic Disease; Corticosterone; Diabetes Mellitus, Type 1; Humans; Stress, Physiolo

2004

Trials

1 trial available for corticosterone and Autoimmune Diabetes

ArticleYear
GLP-1(7-36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans.
    Endocrinology, 2010, Volume: 151, Issue:6

    Topics: Adrenocorticotropic Hormone; Adult; Animals; Corticosterone; Diabetes Mellitus, Type 1; Exenatide; G

2010

Other Studies

34 other studies available for corticosterone and Autoimmune Diabetes

ArticleYear
Evaluation of the Central Effects of Systemic Lentiviral-Mediated Leptin Delivery in Streptozotocin-Induced Diabetic Rats.
    International journal of molecular sciences, 2021, Dec-07, Volume: 22, Issue:24

    Topics: Animals; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models,

2021
UCP1-independent glucose-lowering effect of leptin in type 1 diabetes: only in conditions of hypoleptinemia.
    American journal of physiology. Endocrinology and metabolism, 2020, 01-01, Volume: 318, Issue:1

    Topics: Adipose Tissue, Brown; Adipose Tissue, White; Animals; Blood Glucose; Corticosterone; Diabetes Melli

2020
SGLT2 Inhibition by Dapagliflozin Attenuates Diabetic Ketoacidosis in Mice with Type-1 Diabetes.
    Cardiovascular drugs and therapy, 2022, Volume: 36, Issue:6

    Topics: Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Type 1; Diabetic Ketoacidosis; Epinephrin

2022
Intracerebroventricular infusion of angiotensin AT2 receptor agonist novokinin aggravates some diabetes-mellitus-induced alterations in Wistar rats.
    Canadian journal of physiology and pharmacology, 2018, Volume: 96, Issue:5

    Topics: Animals; Behavior, Animal; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type

2018
Hyperactivation of the hypothalamo-pituitary-adrenocortical axis in streptozotocin-diabetic gerbils (Gerbillus gerbillus).
    International journal of experimental pathology, 2018, Volume: 99, Issue:4

    Topics: Animals; Body Weight; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Ge

2018
Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats.
    Diabetes, 2013, Volume: 62, Issue:8

    Topics: Animals; Catecholamines; Corticosterone; Diabetes Mellitus, Type 1; Glucagon; Glucagon-Secreting Cel

2013
FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis.
    Nature communications, 2015, Apr-28, Volume: 6

    Topics: Acetyl Coenzyme A; Adrenocorticotropic Hormone; Animals; Corticosterone; Diabetes Mellitus, Experime

2015
Insulin Knockout Mice Have Extended Survival but Volatile Blood Glucose Levels on Leptin Therapy.
    Endocrinology, 2016, Volume: 157, Issue:3

    Topics: 3-Hydroxybutyric Acid; Animals; Blood Glucose; Cholesterol; Corticosterone; Diabetes Mellitus, Exper

2016
Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus.
    Physiology & behavior, 2017, Sep-01, Volume: 178

    Topics: Animals; Blood Glucose; Body Weight; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Melli

2017
Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1.
    The Journal of nutrition, 2009, Volume: 139, Issue:5

    Topics: Animals; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; DNA Damage; DNA

2009
When glucocorticoids change from protective to harmful. Lessons from a type 1 diabetes animal model.
    Medicina, 2009, Volume: 69, Issue:3

    Topics: Animals; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Hypothalamo-Hyp

2009
Glucose homeostasis in pre-diabetic NOD and lymphocyte-deficient NOD/SCID mice during gestation.
    The review of diabetic studies : RDS, 2010,Spring, Volume: 7, Issue:1

    Topics: Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Type 1; Female; Glucagon; Glucose Toleran

2010
Effect of diabetes on enzymes involved in rat hepatic corticosterone production.
    Journal of diabetes, 2010, Volume: 2, Issue:4

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Carbohydrate Dehydrogenases; Corticosterone; D

2010
RU486 (mifepristone) ameliorates cognitive dysfunction and reverses the down-regulation of astrocytic N-myc downstream-regulated gene 2 in streptozotocin-induced type-1 diabetic rats.
    Neuroscience, 2011, Sep-08, Volume: 190

    Topics: Animals; Astrocytes; Cognition; Cognition Disorders; Corticosterone; Diabetes Mellitus, Experimental

2011
Prior cadmium exposure improves glucoregulation in diabetic rats but exacerbates effects on metabolic dysregulation, oxidative stress, and hepatic and renal toxicity.
    Drug and chemical toxicology, 2012, Volume: 35, Issue:2

    Topics: Acid Phosphatase; Alkaline Phosphatase; Animals; Blood Glucose; Cadmium; Cadmium Poisoning; Choleste

2012
Polyethylene glycolated recombinant TNF receptor I improves insulitis and reduces incidence of spontaneous and cyclophosphamide-accelerated diabetes in nonobese diabetic mice.
    Endocrinology, 2002, Volume: 143, Issue:9

    Topics: Animals; Autoimmune Diseases; Corticosterone; Cyclophosphamide; Diabetes Mellitus, Type 1; Fatty Aci

2002
Adrenalitis in the non-obese diabetic mouse.
    Autoimmunity, 2002, Volume: 35, Issue:5

    Topics: Adrenal Gland Diseases; Adrenocorticotropic Hormone; Animals; Autoimmune Diseases; Corticosterone; D

2002
Maternal environment affects endogenous virus induction in the offspring of type 1 diabetes model non-obese diabetic mice.
    Congenital anomalies, 2005, Volume: 45, Issue:3

    Topics: Animals; Corticosterone; Diabetes Mellitus, Type 1; Disease Models, Animal; Embryo Transfer; Female;

2005
Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: II. Immunologic analysis.
    Diabetes, 2006, Volume: 55, Issue:1

    Topics: Adoptive Transfer; Amino Acid Sequence; Animals; Blood Glucose; Concanavalin A; Corticosterone; Diab

2006
Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation.
    The Journal of clinical investigation, 2006, Volume: 116, Issue:6

    Topics: Animals; Corticosterone; Corticotropin-Releasing Hormone; Diabetes Mellitus, Type 1; Epinephrine; Gl

2006
Marked genetic differences in the regulation of blood glucose under immune and restraint stress in mice reveals a wide range of corticosensitivity.
    Journal of neuroimmunology, 2007, Volume: 189, Issue:1-2

    Topics: Analysis of Variance; Animals; Animals, Inbred Strains; Blood Glucose; Cells, Cultured; Corticostero

2007
Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse.
    Experimental neurology, 2008, Volume: 210, Issue:2

    Topics: Age Factors; Analysis of Variance; Animals; Bromodeoxyuridine; Cell Count; Cell Proliferation; Corti

2008
Hypophysectomy or adrenalectomy of rats with insulin-dependent diabetes mellitus partially restores their responsiveness to growth hormone.
    Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 1994, Volume: 207, Issue:2

    Topics: Adrenalectomy; Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Experimental; Diabetes Mel

1994
Effects of various environmental stress paradigms and adrenalectomy on the expression of autoimmune type 1 diabetes in the non-obese diabetic (NOD) mouse.
    Journal of autoimmunity, 1993, Volume: 6, Issue:6

    Topics: Adrenal Glands; Adrenalectomy; Animals; Autoimmune Diseases; Corticosterone; Diabetes Mellitus, Type

1993
Aldosterone binding to mineralocorticoid receptors of mononuclear leukocytes in diabetic subjects.
    Acta endocrinologica, 1993, Volume: 128, Issue:6

    Topics: Adult; Aged; Aldosterone; Binding Sites; Corticosterone; Desoxycorticosterone; Diabetes Mellitus; Di

1993
Interleukin-1 effect on glycemia in the non-obese diabetic mouse at the pre-diabetic stage.
    The Journal of endocrinology, 1996, Volume: 148, Issue:1

    Topics: Adrenalectomy; Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Type 1; Female; Hydrocorti

1996
Increased epinephrine-induced cAMP response in severely diabetic BB/W rat liver.
    Endocrine journal, 1997, Volume: 44, Issue:5

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Blood Glucose; Cohort Studies; Corticost

1997
Decreased osteoblast activity in spontaneously diabetic rats. In vivo studies on the pathogenesis.
    Endocrine, 1997, Volume: 7, Issue:2

    Topics: Adrenalectomy; Animals; Body Weight; Corticosterone; Diabetes Mellitus, Type 1; Glucose; Glycosuria;

1997
Basal concentrations of various steroids in the nonobese diabetic (NOD) mouse and effect of immobilization stress.
    Autoimmunity, 1998, Volume: 28, Issue:4

    Topics: Adrenalectomy; Androstenedione; Animals; Corticosterone; Dehydroepiandrosterone; Diabetes Mellitus,

1998
Islet endocrine-cell behavior from birth onward in mice with the nonobese diabetic genetic background.
    Molecular medicine (Cambridge, Mass.), 2001, Volume: 7, Issue:5

    Topics: Aging; Animals; Blood Glucose; Corticosterone; Diabetes Mellitus, Type 1; Female; Glucagon; Immunohi

2001
Glucocorticoids in the nonobese diabetic (NOD) mouse: basal serum levels, effect of endocrine manipulation and immobilization stress.
    Life sciences, 1992, Volume: 50, Issue:14

    Topics: Adrenalectomy; Animals; Circadian Rhythm; Corticosterone; Diabetes Mellitus, Type 1; Female; Male; M

1992
The influence of vanadate on insulin counter-regulatory hormones in obese fa/fa rats.
    The Journal of endocrinology, 1991, Volume: 131, Issue:2

    Topics: Animals; Blood Glucose; Body Weight; Corticosterone; Diabetes Mellitus, Type 1; Epinephrine; Female;

1991
Suprarenal cortical reserve capacity in juvenile diabetes.
    The Gazette of the Egyptian Paediatric Association, 1974, Volume: 22, Issue:1

    Topics: Acetone; Adolescent; Adrenal Cortex; Adrenal Glands; Adrenocorticotropic Hormone; Child; Circadian R

1974
Hypophyseo-adrenocortical function in diabetes mellitus.
    Acta medica Scandinavica, 1972, Volume: 191, Issue:4

    Topics: Acidosis; Adolescent; Adrenocortical Hyperfunction; Adult; Aged; Blood Glucose; Child; Circadian Rhy

1972